Incomplete Overview over Emittance Measurements and Simulations at EXFEL

Yauhen Kot PPS Meeting 12.10.2017

- 1. Injector Setup
- 2. Simulations Setup
- 3. Emittance Measurements in 2016
- 4. Simulations on WPs from 2016 and Comparison to Measurements
- 5. Emittance Measurements in 2017. Evaluation of the Statistics
- 6. Comparison of the Simulations to Emittance Measurements in 2017
- 7. Solenoid Current and Gun Phase Scan

1. Injector Setup

- 2. Simulations Setup
- **3.** Emittance Measurements in 2016
- 4. Simulations on WPs from 2016 and Comparison to Measurements
- 5. Emittance Measurements in 2017. Evaluation of the Statistics
- 6. Comparison of the Simulations to Emittance Measurements in 2017
- 7. Solenoid Current and Gun Phase Scan

XFEL Injector Lattice Layout

- Gives place for:
- Photoinjector Gun
- ACC1 and ACC39
- -Laser heater
- Diagnostics section
- (1.5 76° FODO-cells with 4 OTR)
- TDS
- Spare place of about 3m for the dump exchange
- 6.5m long shielding
- 20m long Dogleg for the vertical Displacement of the beam (2.75m)

Beam Optical Functions in the Injector

Matching region 6 Quadrupoles

1. Injector Setup

2. Simulations Setup

- **3.** Emittance Measurements in 2016
- 4. Simulations on WPs from 2016 and Comparison to Measurements
- 5. Emittance Measurements in 2017. Evaluation of the Statistics
- 6. Comparison of the Simulations to Emittance Measurements in 2017
- 7. Solenoid Current and Gun Phase Scan

Simulations Setup

RF-Gun	Cathode Laser	Booster	ASTRA, XTrack
Field Balance= 1.04	Temporal Profile: Gauss 6.00ps rms (FWHM: 14.1ps)	ACC1: 8xTESLA cavities: 1^{st} cavity centered at $z=4.0401m \rightarrow 1^{st}$ iris at z=3.637m	200K particlesWith wakesWith coupler kicksWith SCR
E _{cath} =50.00-53.00MV/m	Transverse: radial homogeneous	E _{peak} =34.42MV/m Phase=0.0 degree	Rotational symmetry Mesh: NradxNlong=40x100
Solenoid: main centered at z=0.276m Bucking coil at compensation	Solenoki Main Bucking GUN GUN 0.00 2.75 3.52	2 nd QUAD 1 st QUAD OSTER ACC39 14.44 15.60 20.86	 Tuned Parameters: Main solenoid peak field Laser rms spot size Rms bunch length Gun launch phase

Goals & Tasks: - minimized transverse emittance at the 1st quadrupole (z=14.44m) - matchable optics $\rightarrow \beta$ <100m, $|\alpha|$ <5 @1st quadrupole

- 1. Injector Setup
- 2. Simulations Setup

3. Emittance Measurements in 2016

- 4. Simulations on WPs from 2016 and Comparison to Measurements
- 5. Emittance Measurements in 2017. Evaluation of the Statistics
- 6. Comparison of the Simulations to Emittance Measurements in 2017
- 7. Solenoid Current and Gun Phase Scan

Summary of the Emittance Measurements in 2016*

Charge, [pC]	Horizontal, [mm mrad]	Vertical, [mm mrad]	Simulations
50	0.56±0.01	0.64±0.01	0.230
100	0.77±0.02	0.83±0.03	0.247
500	1.28±0.02	1.23±0.03	0.924
1000	2.95±0.02	2.81±0.03	1.903

Machine Parameters during Measurements			
Gun	50MV/m, -45 deg		
Laser	Gauss, 6 ps rms		
BSA	0.5-1.2-1.5 mm		
Solenoid	Accordingly adjusted		

* B. Beutner "European XFEL Injector Commissioning Results"

Summary of the Emittance Measurements in 2016

Measurements*		Simulations					
Charge, [pC]	Horizontal, [mm mrad]	Vertical, [mm mrad]	ASTRA at 14.45m	Xtrack at FODO	ε _{Slice} μM	δE _{peak} , [keV]	I _{max} [A]
50	0.56±0.01	0.64±0.01	0.230	0.236	0.159	0.26	3.44
100	0.77±0.02	0.83±0.03	0.247	0.285	0.183	0.42	5.88
500	1.28±0.02	1.23±0.03	0.924	1.086	0.661	1.24	24.3
1000	2.95±0.02	2.81±0.03	1.903	2.033	1.268	1.93	38.3

- \rightarrow Best agreement for the 500pC case
- → Huge discrepancy between measured and simulated emittances for other charges due to:
- Most effort was set to establish performance with 500pC bunch charge
- Other charges got less priority
- Certain issues with screens for small beam spot size
- → Multi-quad scans with enlarged beta function needed for correct measurement of the emittances with small bunch charges

- 1. Injector Setup
- 2. Simulations Setup
- **3.** Emittance Measurements in 2016
- 4. Simulations on WPs from 2016 and Comparison to Measurements
- 5. Emittance Measurements in 2017. Evaluation of the Statistics
- 6. Comparison of the Simulations to Emittance Measurements in 2017
- 7. Solenoid Current and Gun Phase Scan

Simulations for 1nC Bunch Charge, GunV=50MV/m

Simulations for 1nC Bunch Charge, GunV=50MV/m

Bunch Parameters				
$\epsilon_{\text{x},\text{y}}$ proj. at 14.45m	1.923 μm			
ϵ_x at FODO	2.188 μm			
$\epsilon_{\rm y} {\rm at} {\rm FODO}$	2.018 μm			
ϵ_{Slice} at 14.45m	1.268 μm			
Twiss parameters at 14.48m	β=11.7m α=-0.604			
Energy spread rms at peak (at 14.45m)	1.925 keV			
I _{peak}	38.339 A			
Working Point acc. to simulations				
BSA	1.5mm			
Solenoid	318.0 A			
Measured				
ε _{x,y} proj	2.95 and 2.81			

Simulations for 500pC Bunch Charge, GunV=50MV/m

Simulations for 500pC Bunch Charge, GunV=50MV/m

Bunch Parameters				
$\epsilon_{x,y}$ proj. at 14.45m	0.9235 μm			
ϵ_x at FODO	1.131 μm			
ε _y at FODO	1.040 μm			
ϵ_{Slice} at 14.45m	0.661 μm			
Twiss parameters at 14.48m	β=12.9m α=-1.35			
Energy spread rms at peak (at 14.45m)	1.241 keV			
I _{peak}	24.293 A			
Working Point acc. to simulations				
BSA	1.2mm			
Solenoid	317.2 A			
Measured				
ε _{x v} proj	1.28 and 1.23			

Simulations for 100pC Bunch Charge, GunV=50MV/m

Simulations for 100pC Bunch Charge, GunV=50MV/m

Bunch Parameters				
$\boldsymbol{\epsilon}_{x,y}$ proj. at 14.45m	0.247 μm			
$\epsilon_{\rm x}$ at FODO	0.288 μm			
$\epsilon_{\rm y}$ at FODO	0.284 μm			
ϵ_{Slice} at 14.45m	0.183 μm			
Twiss parameters at 14.48m	β=26.1m α=-1.85			
Energy spread rms at peak (at 14.45m)	0.415 keV			
I _{peak}	5.884 A			
Working Point acc. to simulations				
BSA	0.5 mm			
Solenoid	316.2 A			
Measured				
ε _{x,γ} proj	0.77 and 0.83			

Simulations for 50pC Bunch Charge, GunV=50MV/m

Simulations for 50pC Bunch Charge, GunV=50MV/m

Bunch Parameters				
$\boldsymbol{\epsilon}_{x,y}$ proj. at 14.45m	0.230 μm			
ϵ_x at FODO	0.241 μm			
$\epsilon_{\rm y} \text{at} \text{FODO}$	0.232 μm			
ϵ_{Slice} at 14.45m	0.159 μm			
Twiss parameters at 14.48m	β=25.8m α=-2.48			
Energy spread rms at peak (at 14.45m)	0.263 keV			
I _{peak}	3.438 A			
Working Point acc. to simulations				
BSA	0.5 mm			
Solenoid	316.2 A			
Measured				
ε _{x,y} proj	0.56 and 0.64			

- 1. Injector Setup
- 2. Simulations Setup
- **3.** Emittance Measurements in 2016
- 4. Simulations on WPs from 2016 and Comparison to Measurements
- 5. Emittance Measurements in 2017. Evaluation of the Statistics
- 6. Comparison of the Simulations to Emittance Measurements in 2017
- 7. Solenoid Current and Gun Phase Scan

- → Detailed measurements have been done for the peak electric field of the gun of 53.0MV/m
- → Peak electric field of the gun has been increased due to conditioning from 53.0MV/m in April 2017 to 54.5MV/m in September 2017

Emittance Measurements for 500pC Bunch Charge

- → Detailed measurements have been done for the peak electric field of the gun of 53.0MV/m
- → Tried the gun phase in the range of 9 degrees
- → Peak electric field of the gun has been increased due to conditioning from 53.0MV/m in April 2017 to 54.5MV/m in September 2017

- 1. Injector Setup
- 2. Simulations Setup
- **3.** Emittance Measurements in 2016
- 4. Simulations on WPs from 2016 and Comparison to Measurements
- 5. Emittance Measurements in 2017. Evaluation of the Statistics
- 6. Comparison of the Simulations to Emittance Measurements in 2017
- 7. Solenoid Current and Gun Phase Scan

Representative Measurement for GunV=53.0MV/m

Measure	Simulations WP		
Date	01.06.2017	at 14.45m	FODO
Charge, [pC]	500	50	00
GunV, [MV/m]	52.9	53	3.0
Isol, [A]	325.0 A	33	4.2
Gun Phase, deg	- 44.0	0.0	
BSA, [mm]	1.2	1.2	
ϵ_x proj gauss	1.160±0.089	0.933	1.095
ϵ_{y} proj gauss	0.876±0.066	0.933	1.010
ϵ_x proj rms	1.52±0.10	0.933	1.095
ϵ_{y} proj rms	1.16±0.11	0.933	1.010
Bmag _x gauss	1.088		
Bmag _y gauss	1.01		
Bmag _x rms	1.19		
Bmag _y rms	1.24		

Simulations on 500pC Bunch Charge for GunV=53.0MV/m

Representative Slice Emittance Measurement

Measurement		Simulations WP		
Date	20.04.2017	at 14.45m FODO		
Charge, [pC]	500	500		
GunV, [MV/m]	53.0	53.0		
lsol, [A]	323.2 A	334.2		
Gun Phase, deg	- 44.0	0.0		
BSA, [mm]	1.2	1.2		
ε_x slice average	0.60-0.70	0.64		
ε_{y} slice at I _{peak}	0.73	0.65		

- 1. Injector Setup
- 2. Simulations Setup
- **3.** Emittance Measurements in 2016
- 4. Simulations on WPs from 2016 and Comparison to Measurements
- 5. Emittance Measurements in 2017. Evaluation of the Statistics
- 6. Comparison of the Simulations to Emittance Measurements in 2017
- 7. Solenoid Current and Gun Phase Scan

Evaluation of the Statistics: Solenoid Current Scan

Gaussian fit

rms fit

- → Tried the solenoid current in the range of 3.5A
- → Gun phase was not intendedly adjusted
- \rightarrow Slope in the gun phase
- → Best emittance achieved for the solenoid current of 324.3A

Parameters:

- GunV=53.0 MV/m
- Laser: Gauss, 6ps rms
- BSA=1.2mm,
- Q=500pC

Yauhen Kot | PITZ Physics Seminar| 12.10.2015 | Slide 28

Evaluation of the Statistics: Solenoid Current Scan

Parameters:

- → Tried the solenoid current in the range of 2.0A
- → Gun phase was fixed in the range of 1 deg
- → Best emittance achieved for the solenoid current of 324.3A

- GunV=53.0 MV/m
- Laser: Gauss, 6ps rms
- BSA=1.2mm,
- Q=500pC

Simulations: Solenoid Current Scan

- Simulations performed in 2 ways:

1. 2D-ASTRA till 14.48m

2. Xtrack from ASTRA file at 1.09m till 40m right after FODO section with taking into account wakes, coupler kick and SCR

Parameters:

- GunV=53.0MV/m
- GunPhi=0.0, fixed
- Laser: Gauss, 6ps rms
- BSA=1.2mm,
- Q=500pC

Evaluation of the Statistics: Gun Phase Scan

- \rightarrow Tried the gun phase 9.0 deg
- → Solenoid current adjusted accordingly
- → Best emittance achieved for the gun phase around -41 deg with respect to the zero crossing

- Parameters:
- GunV=53.0 MV/m
- Laser: Gauss, 6ps rms
- BSA=1.2mm,
- Q=500pC

Simulations: Gun Phase Scan

- Simulations performed in 2 ways:
- 1. 2D-ASTRA till 14.48m

2. Xtrack from ASTRA file at 1.09m till 40m right after FODO section with taking into account wakes, coupler kick and SCR

Parameters:

- GunV=53.0 MV/m
- Isol=334.2 A, fixed
- Laser: Gauss, 6ps rms
- BSA=1.2mm,
- Q=500pC

