

Research Activities on Photo Injectors at IHEP

Presented by Jianping Dai

Institute of High Energy Physics, CAS

2017/09/13

jpdai@ihep.ac.cn

Outline

1. Introduction

2. Photocathode RF Gun

3. Photocathode DC Gun

4. Summary

I. A photocathode RF injector was developed successfully for SDUV-FEL in 2008, by the joined group of IHEP/THU/SINAP

- Shanghai Deep-UltraViolet Free-Electron Laser (SDUV-FEL) started as an 262 nm SASE / 88 nm HGHG FEL test setup around 2000.
- Funding partially supported by
 - Chinese Academy of Sciences / CAS
 - Ministry of Science and Technology of China / MOST
 - National Natural Science Foundation of China / NSFC
- Collaborating between USTC, IHEP, THUB and SINAP
- Be a test bed for the key technologies for XFELs

The photo injector works well, laying a solid foundation for the following FEL experiments

- 2009.04-08: Linac commissioning after energy upgrade
- 2009.09-12: SASE lasing
- 2010.01-03: Seeded FEL Installations
- 2010.05.17: HGHG signal
- 2010.05.22: Echo signal (`double-peak')
- 2010.12: HGHG saturation
- 2011.04: EEHG-FEL lasing
- 2011.07-08: Cascaded HGHG experiments begin
- 2011.12: HGHG tunability
- 2012.04: Cascaded HGHG signal
- 2013.05-06: Installation for high harmonics EEHG and polarization control
- 2013.08: EEHG@10th harmonic
- 2013.11: Crossed–planar undulator polarization control

SDV-FEL facility

	Parameters	Designed Value	Unit
	Energy	30~40	MeV
$\mathbb{B} \text{ eam } \mathbb{D} \text{ iagn o stics System}$	Emittance (rms)	4~6	mm•mrad
	Charge/bunch	1	nC
Accelerating Section Em ittance Compansation M agnet	Bunch Length (FWHM)	8~10	ps
	Energy Spread (rms)	<1%	
	Repetition Rate	10	Hz

Schematic Diagram and parameters of the photocathode RF injector for SDUV-FEL

II. A photocathode DC injector (Named as PAPS Beam Test System) is being developed at IHEP

Platform of Advanced Photon Source Technology R&D, Huairou Science Park, Huairou, Beijing

Cryogenic system 2.5kW@4.5K/300W@2K 800L/h liquidation

- 100W for 3 vertical test stands
- 100W for 2 horizontal module test stands
- 100W for beam test system

X-ray system

Advanced X-ray related technologies R&D

Õ 比例尺

4500 m² SRF lab

Mission: World-leading SRF Lab for future Superconducting Accelerator Projects and SRF Frontier R&D

- Three vertical test stands each with four cavities
- Coupler conditioning stands for eight couplers
- 30 m-long clean room
- 36 m-long module assembly zone
- Two horizontal module test stands (12m module)

Beam test system

- Beam test based on superconducting module
- High power conditioning (High efficiency klystron)
- High current photoinjector R&D

Magnet system

Precision machining for HEPS magnets

Photocathode DC Injector (2017~2020)

Outline

1. Introduction

2. Photocathode RF Gun

3. Photocathode DC Gun

4. Summary

Parameters of the RF Gun

Parameters	Designed Value	Unit
RF Cavity Type	1.6 cell (modified BNL type IV)	
Cathode	Mg (or Cu)	
Radius of the Cathode	6	mm
Surface Field	100~120	MV/m
Q.E. (@262~264nm)	>2×10 -5	
Energy	4~6	MeV
Emittance (rms)	3~5	mm•mrad
Bunch Length (FWHM)	8~10	ps
Repetition Rate	10	Hz
RF Power Needed	10~14	MW

Mg cathode

Cu cathode

RF cavity

Emittance compensation magnet

Laser system

- JAGUAR QCW-1000: Time-Bandwidth
- Oscillator+Regen-Amplifier+FHG
- **Nd:YLF (1047nm)**
- **BBO** (1047nm \rightarrow 523nm \rightarrow 262nm)
- Oscillator:119MHz (for RF 2856MHz, 1/24)
- Synchronizer:CLX-1100

Parameters of laser system

	Design value	Measured value(@10Hz)
Wavelength	260nm-280nm	262nm
Energy	>200µJ	>350µJ
Energy stability(rms)	1%	0.38% @8h rms
Pulse length	~8ps	~8ps
Jitter of beam size and position	<2% rms	<0.15%rms-beam size <0.35%rms beam position
Repetition rate:	0-100Hz	0-100Hz
Synchronization jitter	<1ps	0.12ps(monitored) 0.19ps(measured)

RF gun and the beam monitor system

RF gun commission results

Parameters	Stage I (2008/02~03)	Stage II (2008/05~07)	Stage III (2008/11~12)
Charge (in operation)	/	1.4nC	0.6nC
Charge (max.)	/	2.4 nC	1.1nC
Energy	~3.5	4.3MeV	4.2MeV
Emmittance	/	4mm•mrad	4mm•mrad

Outline

- **1.** Introduction
- 2. Photo cathode RF Gun
- **3.** Photo cathode DC Gun
- **4.** Summary

• Design and parameters

Layout of Photocathode DC-Gun

Parameter	Value
HV	$350\sim 500 \; kV$
Cathode	GaAs:Cs
QE	5-7%(initial),1%
Driven laser	2.3W, 530nm
Repetition rate	100MHz, 1.3GHz*
Nor. emittance	(1~2)mm.mrad
Bunch length	20ps
Beam current	(1~10) mA

*Two operation modes:

1). 100MHz-7.7mA-77pC,

2)1300MHz-10mA-7.7pC

- 1. Two laser oscillators are working at 1.3GHz and 100MHz respectively
- 2. 100MHz and 1.3GHz oscillators are integrated into one laser system with a 2x2 fiber coupler
- The green laser output power after SHG crystal is more than 5W
- 4. A set of four a-BBO crystals is used as longitudinal pulse shaper stacking an input pulse to >20ps

-		
Parameters	Mode 1	Mode 2
Electron bunch charge	77pC	7.7pC
Pulse energy at cathode	18nJ	1.8nJ
Pulse repetition rate	100MH z	1.3GHz
Power at cathode	1.8W	2.3W
Pulse length (flattop)	20-30ps	20-30ps

Laser pulse modification and shaping

Laser system for photocathode

Photocathode

- 1. A GaAs photocathode system was built up at first
- 2. A QE of ~10% after Cs/O activation was obtained
- 3. Dark lifetime can keep 1000hr with $QE{\geq}1\%$
- In recent, a K₂CsSb photocathode system was set up, growth experiment just started

GaAs photocathode system

• Other parts: ceramics, gun, power supply, beam line.....

- 1. Construction of each component is done
- 2. Vacuum in the gun achieves 6×10^{-10} Pa
- 3. Pressurized insulating gas: SF6

• High voltage conditioning

- 1. The pressure of SF6 in the pressurized tank: 2.5atm
- 2. The vacuum interlock level is 4×10^{-6} Pa
- 3. After around 140 hours conditioning, HV reached up to 440kV that means a HV between cathode and anode is around 431kV (5000M Ω /5100M Ω)
- 4. Then a huge radiation dose caused by field emission was found at one point of gun chamber. There is still a big dose even though reduce the HV to 250kV.
- 5. Open the gun chamber and re-polish the cathode to remove FE source, then recover the vacuum
- Re-conditioning up to 370kV (HV between cathode and anode is 362kV) without obvious dose
- 7. Next, beam operation @350kV

Future Plan: After 2020, the hall for Magnet system will be free up. A compact test facility towards one machine, two purposes: using a common SC linac for XFEL and ERL simultaneously now is proposed at IHEP

FEL Energy 35MeV

Summary

- > Two photo injectors have been researched at IHEP
- The photo cathode RF injector for SDUC-FEL was developed successfully in 2008 and worked well in the following years.
- A photocathode DC injector is being developed now, and good progress has been made
- In addition to the DC injector, a photocathode CW RF injector will also be investigated in the near future.

Thanks!