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Electron Bunch Train of TSINGHUA UNIVERSITY @

o Bunch train consists of a large number of equally spacing electron microbunches.

b(k) = ! [ 1(2)e *2dz
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o Narrow-band high-intensity THz radiation
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Application of Bunch Train of TSINGHUA UNIVERSITY ‘&g

o Resonant excitation of plasma/dielectric wakefields.

« The plasma density is matched to the bunch train period for maximum wakefields
acceleration or maximum transformer ratio in plasma wakefield acceleration.

Equidistant
NGERS Drive Bunches

Bunch 6 P. Muggli et al., PRL 101, 054801 (2008)

° ‘

C. Jing et al., PRL 98, 144801 (2007)

p

A= plasma wavelength

« Requirements for bunch train:

Tunable bunching period (T), high bunching factor (b(k)), high peak current (I,)



Bunch Train Generation
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Exchange transverse modulation to longitudinal distribution
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« Exchange wake-induced energy modulation to density bunching
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* Frequency beating or difference of the laser-induced density bunching
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D. Xiang et al., PRST-AB 12, 080701 (2009) M. Dunning et al., PRL 109, 074801 (2009)



Two new methods
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« In this talk, two new methods will be discussed to improve the quality of bunch train.

« The first method is based on the scheme of nonlinear longitudinal space charge

oscillation to produce high-intensity electron bunch train

Cail1 o )
CTR

=t i———\—lll b+

- , Deflectin
Colz ~ SbandLinac  Triplet] ~ Chicane | cawtygTrlplet'z Dipole” /(

Z. Zhang et al., PRL 116, 184801 (2016)
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« The second method is using slice energy spread modulation from the interaction with

laser to obtain density bunching in electron beam.
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Tunable High-Intensity Bunch Train Generation
based on Nonlinear Longitudinal Space Charge

Oscillation

Zhen Zhang, Lixin Yan, Yingchao Du et al.




Space charge oscillation

» Space charge force dominants the evolution of the beam with initial modulation.

« Plasma oscillation predicts the periodic evolution between density and energy modulation.
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* To maintain the initial modulation, the oscillation should be close to zero or half
oscillation period.



Nonlinear space charge oscillation

« The density bunching re-appears after half oscillation period, and can be enhanced if
nonlinear components become significant. P. Musumeci et al., PRL 106, 184801 (2011)

» Use 1D fluid model to solve the longitudinal space charge oscillation
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 Wave breaking happens at the nonlinear space charge oscillation.
« The method is proposed to generate high-intensity electron bunch train.

P. Musumeci et al., PRST-AB 16, 100701 (2013)
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Experiment beam line

« The experiment was carried out at Tsinghua Thomson scattering X-ray source.
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cavity

« Key parameters: Initial density modulation and oscillation phase advance

» Initial density modulation is generated by laser pulse stacking with 3 a-BBO
crystals with fixed separation 1ps.

» Osclillation phase advance is controlled by beam charge, laser spot size at the
cathode and solenoid focusing.
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Oscillation evolution

« Start from low charge and weak solenoid focus

a) ®/27 = 0.13
S8saasas

Intensity
Intensity

100 200 300 400 500 100 200 300 400

y (pixel)
c) /27 =0.28

R

|
05 /\.A/\.»vvv‘,\

Intensity
Intensity

b) ®/27 = 0.24

y (pixel)

d) ¢/27 = 0.33

500

y (pixel)
0.4 -

100 200 300 400 500 100 200 300 400

y (pixel)

500

e)

a)

Bunching b
=]
=]

From GPT simulation

0 0.1 0.2 0.3
Phase advance @ (2m)

0.4

0=263pC I =121.03 A

|

—
(o]
(=)

x (pixel)

n
=

100 200 300 400 500

v (pixel)
=
g 1
E
=
Bos
2
=
o O L L L L 1
z 100 200 300 400 500

v (pixel)

12



Oscillation evolution

* Measurements of high-intensity electron bunch train
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THz Autocorrelation Measurement

o The electron bunch trains are used to generate THz radiation by CTR, and the
spectra are solved through the autocorrelation by the interferometer.
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Tunable Bunch Train Spacing

« The bunch train spacing can be controlled by the velocity bunching of the RF gun
and the accelerator, or by the magnetic compression.
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Optimization of THz Radiation Energy

Simulation studies have shown that there is a optimal initial bunching factor that can
yield largest peak current and largest THz energy.

For a fixed 1-ps initial spacing, the initial bunching factor can be controlled by the single
UV pulse width.
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P. Musumeci et al., PRST-AB 16, 100701 (2013)
The UV pulse length was varied by tuning the IR compression grating before third-
harmonics generation process and measured by cross-correlation technique with an IR
laser.
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THz Radiation Energy

THz radiation energy with different initial UV pulse length (initial density modulation).
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THz from Dielectric Wakefield Structures

« mJ level THz radiation can be produced by the electron bunch train based on
dielectric wakefield tubes.
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Generation of High-Power, Tunable Terahertz
Radiation from Laser Interaction with a Relativistic

Electron Beam

Zhen Zhang, Zhirong Huang (SLAC) et al.




Generate better bunch train

« We propose a new method to generate electron bunch train with wide frequency
range (1~10THz) and /arge bunching factor (~0.4).

 The method is based on laser-electron interaction to modulate the slice energy
spread. The beamline is similar with the laser heater but the laser power envelop
is modulated. ;
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» Strong density bunching can be generated in a relativistic electron beam after
the chicane.
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Theoretical analysis

« Assume the initial beam is uniform in current, but has a Gaussian slice energy spread
os(z,) that is a function of the longitudinal coordinate z,
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« Add an energy chirp (h) and let the beam pass through a chicane (Rs)
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Theoretical analysis

« The derivations above assume the beam has a Gaussian slice energy distribution,

which is not always true in the laser heater.

 When the laser waist size in the undulator is much larger than the beam size, the

resulting energy profile is a double-horn distribution
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Theoretical analysis

« Phase spaces of Gaussian and double-horn distributions when yielding maximum

bunching factor
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Simulations

*  We use the code ELEGANT to simulate the laser modulation and beam dynamics with
LCLS injector parameters (135MeV, 800nm laser)

Lw
Gun Linacl Modulator Linac2 Chicane

» The laser pulse train can be generated by the chirped pulse beating or pulse stacking
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» The simulation starts from the exit of Linac1 to the end. The acceleration phase of
Linac2 is -/+90 degrees to only add energy chirp, but does not change the beam energy.
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Simulations

« 2THz, scan Rs¢, parameters: P = 1GW, & = 190keV (1.4 x 1073)
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« The optimal condition |k;GR¢| = 1.75
predicts the optimal chicane is -29.4mm,
consisting with the simulations (-29mm).

* The peak current stays almost constant
with larger Rxg.
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Tunability

We can vary the frequency by compressing the beam or changing the laser power

envelope modulation period.

We need to keep the optimal condition |k,0Rs4| = 1.75 while changing k;
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» The degradation of the bunching factor is due to the non-uniform compression.
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Higher THz frequencies

The frequency range is limited by the
nonlinear effects in beam compression.

If we use an X-band cavity (to linearize LPS)
before the chicane, the frequency range with
large bunching factor can be extended
significantly.

For 4THz initial modulation case:
with X-band: 1~10 THz
without X-band: 3~5 THz

We also give the required parameters for
different frequencies, including the X-band
cavity energy.

More bunch compression can yield
>10 THz.

Bunching factor b

E X (MeV)

=
.

=
L

=
b

_j;] =4 THz, w/ X band -
= = =f,=4THz, w/o X band

2 < 6 8
':':entral flrequenc}rl i (THz}

2

n
=
Chiro enerev £ (MeW

=

2 < 6 8
':':entral flrequenc}rl i (THz}

=

2 < 6 8
Central frequency f (THz)

10

)
3':}

27



Discussions

« Based on the slice energy spread modulation method, the bunching factor can be kept
around 0.4 for a wide frequency range (1-10 THz), which is of great advantages in the
generation of tunable narrow-band THz.

« THz frequency can be varied continuously by bunch compression (to 20 THz), or by
changing the laser power envelope modulation period.

« Since there is no strong space charge force (for a relativistic beam) or beam loss
during the process, the transverse beam quality can be preserved for matching,
focusing and acceleration in the further applications.

« The method is also applicable for the electron beams from storage rings, energy
recover linac or thermal-cathode injectors with higher repetition rate.

» Laser envelope shaping can be applied to shape THz field.

« The main requirement of the method is the electron beam energy needs to be ~ 100
MeV to be resonant with an optical laser. However, for electron beams with lower
energies (~50 MeV), it is still possible to interact harmonically with the optical laser.

(50 MeV, undulator period 2.5 cm, K=1.5, the third harmonic resonant wavelength is 760 nm)



Scheduled experiments at Tsinghua

* We are ready for the beam commissioning for the interaction between 40MeV beam
and 800nm IR laser in the undulator.
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