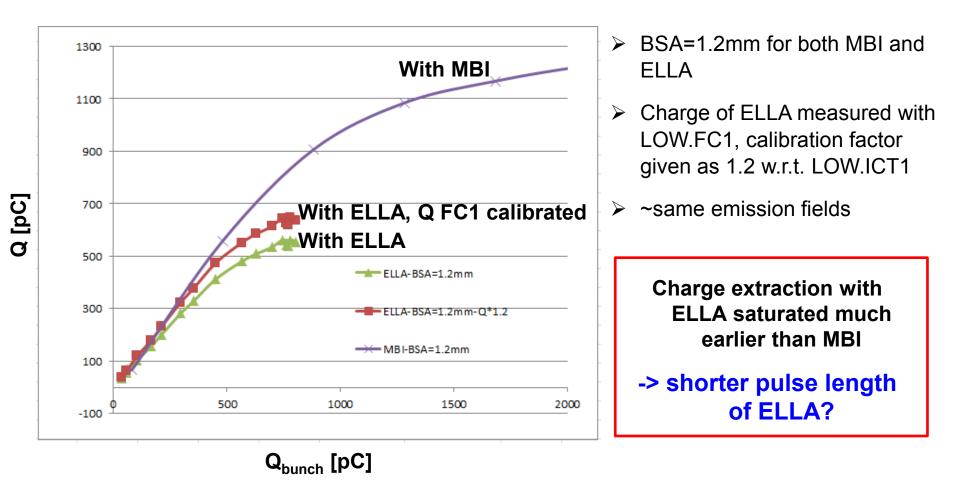
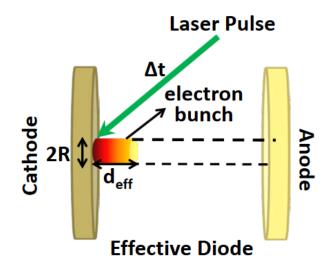
Photoemission-based evaluation of cathode illuminating laser pulse length

- Emission measurements with MBI and ELLA
- Poisson solver-based steady state current limit
- Emission model characterzaition and application
- Simulations of electron bunch length
- Summary

Ye Chen, DESY Zeuthen, 23.03.2017


^[1] Child, C. D., Physical Review. Series I. 32 (5): 492–511 (1911)

^[2] D. Filippetto, et al., PRST-AB 17, 024201 (2014)



Emission measurements with MBI and ELLA

Poisson solver-based steady state current limit

Steady state current limit described by Poisson equation $\Delta \phi = -\frac{1}{\varepsilon_0} j_z \sqrt{\frac{m}{2e(\phi + E_0 z)}}$ $\frac{\partial \phi}{\partial z}|_{z=0,r \le R} = -E_0 \quad \phi(r,0) = 0$ Child-Langmuir Law^[1] $J_{sat} = \frac{4\varepsilon_0}{9} \sqrt{\frac{2e}{m} \frac{V^{3/2}}{d^2}}$

Enhanced Child-Langmuir Law with finite transverse dimensions ^[2]

Valid for temporally flattop shaped bunch in cigar beam ratio regime with Cc ≈ 1, meaning effective diode length close to beam radius

$$I_{sat} = \frac{Q_{sat}}{\Delta t} = C_c \ I_0 \frac{\sqrt{2}}{9} \left(\frac{eE_0R}{mc^2}\right)^{1.5}$$

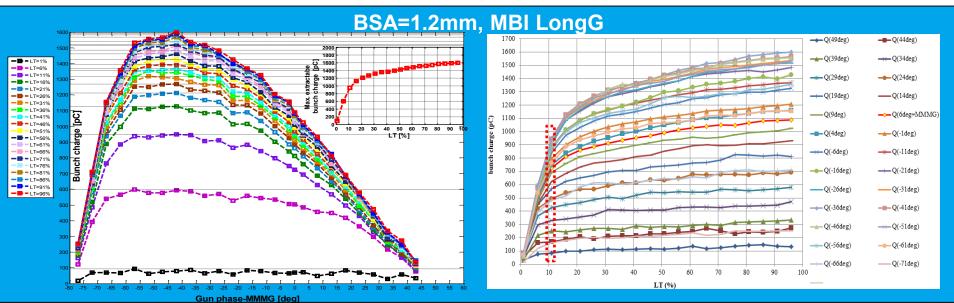
 Δt -> laser pulse length

- Q_{sat} -> space-charge limited bunch charge (onset)
- $R \rightarrow$ radius of emission area
- $E_0 \rightarrow$ accelerating field gradient
- $I_0 \rightarrow \text{constant}, 17\text{kA}$
- Δt -> Pulse length should be much shorter than RF period

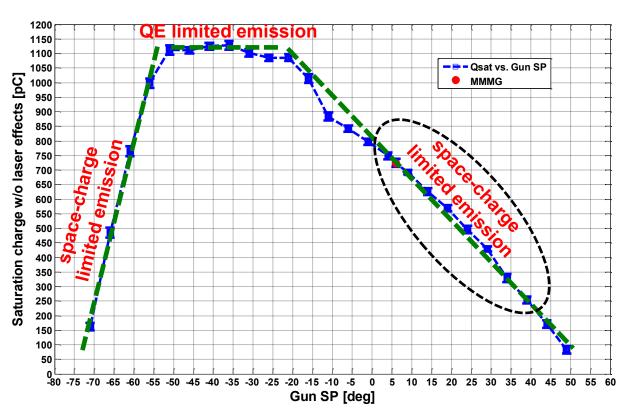
Poisson solver-based steady state current limit

Re-formulize D. Filippetto's effective diode emission model^[1] based on C-L law^[2] for Gaussian bunches:

$$\Delta t = \frac{9}{\sqrt{2}I_0} \left(\frac{mc^2}{eE_0}\right)^{1.5} \frac{\sqrt{d_{eff}}Q_{sat}}{R^2}$$


 d_{eff} -> effective length of emission diode

 C_c -> based on first simulations for guassian bunches C_c is no longer a constant, here taken as $\sqrt{R/d_{eff}}$ from the original C-L law


 \rightarrow To be discussed in a separate talk

> Model characterization based on measurements in a simplified case

- Fix R and ∆t
- Use Q_{sat} and E₀ to Fit d_{eff}

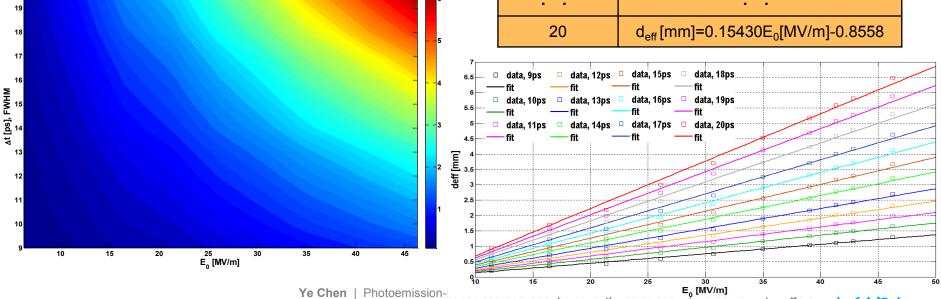
Emission model characterization BSA=1.2mm, MBI LongG

➢ Egun≈ 59.5MV/m to reproduce MMMG

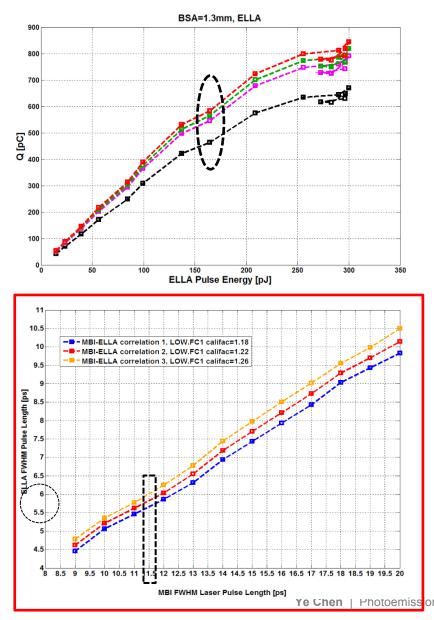
R [mm]	E ₀ [MV/m]	Q _{sat} [pC]
0.6 (BSA = 1.2mm)	46.2520	796.8
	42.8152	748.4
	41.3476	724.6
	39.0525	692.2
	34.9925	626.3
	30.6663	568.3
	26.1067	495.5
	21.3484	429.2
	16.4276	328.8
	11.3818	253.6

Saturated bunch charges w/o beam halo at different gun phases defining onsets of space-charge limitation

Emission model characterization BSA=1.2mm, MBI LongG


Scan MBI laser pulse length

20


- At each \(\Delta\)t, dependence of effective diode length on emission field characterized based on measurement data
- Fix R and ∆t, fit d_{eff} versus E₀ using measurement data from charge phase scans

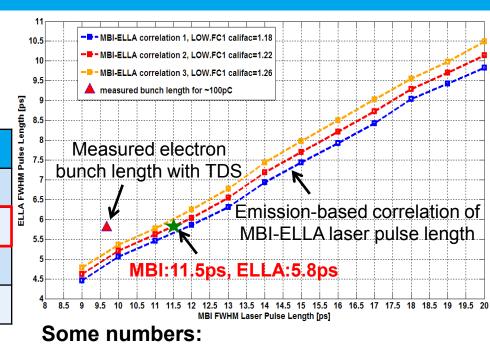
color code: deff [mm]

∆t_fwhm [ps]	d _{eff} [mm] vs. E ₀ [MV/m]	
≤8	No cigar bunch solution	
9	d _{eff} [mm]=0.03089E ₀ [MV/m]-0.1722	
10	d _{eff} [mm]=0.03949E ₀ [MV/m]-0.2190	
11	d _{eff} [mm]=0.04719E ₀ [MV/m]-0.2619	
12	d _{eff} [mm]=0.05556E ₀ [MV/m]-0.3079	
13	d _{eff} [mm]=0.06460E ₀ [MV/m]-0.3581	
14	d _{eff} [mm]=0.07692E ₀ [MV/m]-0.4270	
::	::	
20	d _{eff} [mm]=0.15430E ₀ [MV/m]-0.8558	

MBI-ELLA pulse length correlation

- ELLA bunch charge measured with LOW.FC1, scaling factor w.r.t. LOW.ICT1 given as 1.18, 1.22 and 1.26 for tests
- ELLA pulse length calculated and correlated with MBI laser pulse length scan

		1.18*Qsat	1.22*Qsat	1.26*Qsat
MBI ∆t_fwhm [ps]	d _{eff} [mm]	ELLA ∆t_fwhm [ps]	ELLA ∆t_fwhm [ps]	ELLA ∆t_fwhm [ps]
9	1.5686	4.4621	4.6217	4.7816
10	2.0065	5.0635	5.2081	5.3526
11	2.3975	5.4605	5.6185	5.7764
12	2.8232	5.8574	6.0360	6.2503
13	3.2825	6.3166	6.5476	6.7787
14	3.9079	6.9376	7.1897	7.4419
15	4.4465	7.4336	7.7025	7.9715
16	5.0194	7.9292	8.2149	8.5007
17	5.6245	8.4228	8.7253	9.0222
18	6.4372	9.0366	9.2955	9.5543
19	7.1234	9.4333	9.7056	9.9780
20	7.8399	9.8277	10.1417	10.4988

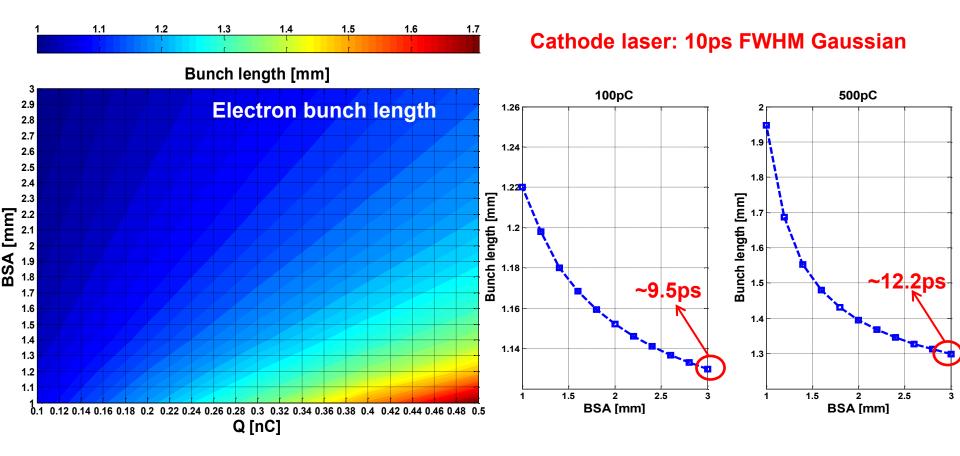

TDS electron bunch length measurements and comparisons

 TDS electron bunch length measurements using MBI and ELLA at different bunch charges

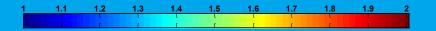
Bunch length measurements				
MBI	ELLA			
105pC: 9.68ps	100pC: 5.8 ps ± 0.25			
233pC: 12.7ps	250pC: 8.7ps ± 0.30			
500pC: 16.2ps	500pC: 14.3ps ±0.33			

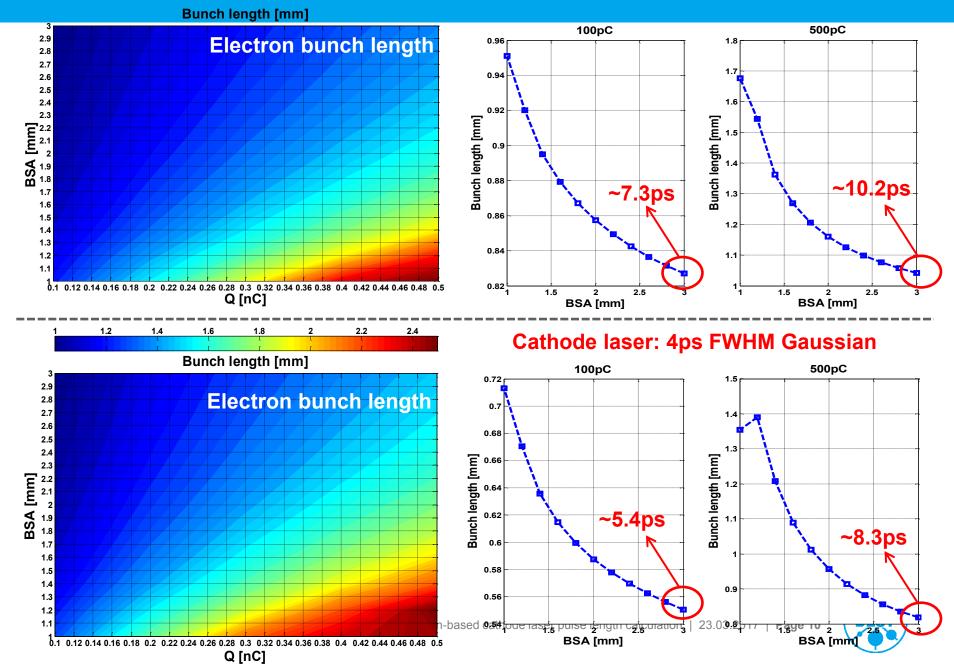
logbook:

- Lowest measurable charge was ~100 pC during these measurements
- ELLA bunch charges were measured using LOW.FC1, calibration factor w.r.t. LOW.ICT1 was estimated as 1.18, 1.22 and 1.26, respectively


100pC measurements with TDS close to emission-based pulse length calculation, example:

Measure(e-bunch) -> MBI: 9.68ps; ELLA:5.8ps Emission model(laser) -> MBI: 9.68ps; ELLA:5.3ps


How exactly electron bunch length correlates with laser pulse length for different BSAs, laser pulse length, bunch charges, etc.?


Simulations of electron bunch length

Cathode laser: 7ps FWHM Gaussian

Summary

- > Shorter pulse length of ELLA than MBI, ~same in experiments
- > MBI-ELLA pulse length correlation gives ~5.8ps for ELLA when MBI is 11.5ps
- Simulations of electron bunch length done for different BSAs, laser pulse lengths and bunch charges
 - ~10ps FWHM laser pulse length ~ e-bunch length measured with 100pC and BSA=3mm
 - For MBI, 100pC and BSA=3.0mm sufficient for measuring laser pulse length; For ELLA, this condition probably not sufficient
- Characterization of enhanced C-L emission model needs detailed emission measurements and further simulations

