Beam dynamics simulations for The SMI experiment at PITZ

- Motivation
- Experimental conditions
- First weird results

Osip Lishilin

PITZ physics seminar Zeuthen, 2016-12-01

Simulated Self-modulation Experiment

Not fully optimized

Experimental Results: 4) Longitudinal Phase space

Q=0.97 nC Plasma density: $\approx 10^{14}$ cm⁻³

Experimental conditions

- "Flattop" laser profile, ~22 ps
- > BSA=1.26 mm, XYrms=0.298 mm,
- > Gun@MMMG, 6.5 MeV/c

> Booster@MMMG, 22.7 MeV/c

Measure\Plasma\ \20161009M\VC2\1413

Initial distribution for ASTRA

> Gregor's script for laser pulse shaping=>MK_CH4.m

Initial distributions for ASTRA

23 ASTRA la Vista 2.0 - \\afs\ifh.de\group\pitz\data\lishilin\sim1\astra\20161130_3_q_scan_nonmodified\beam.ini Generator output file ÷ ÷ > One ideal flattop 100 100 save to file copy to clipboard 1.2 FWHM: 27.947 ps One arbitrary modulated 1.0 flattop 0.8 charge density (a.u.) 0.6 0.4 ASTRA la Vista 2.0 - \\afs\ifh.de\group\pitz\data\lishilin\sim1\astra\0000 Scripts GL\AstraInputBunchCreator\m Generator output file 0.2-C spatial C temporal ÷ ÷ 100 100 save to file copy to c 1.2 FWHM: 27.439 ps 0.0 19 2 7 13 24 30 1.0 relative time in ps 0.8 charge density (a.u.) Scan emission time in ASTRA 0.6 (Trms) in order to scale beam length 0.4 0.2-0.0 13 19 24 30 2 with simulations for PWFA@PITZ | 2016-12-01 | Page 6 relative time in ps

Charge extraction, flattop

Q_extracted vs Q_input for different Trms (ps), flattop

Charge extraction, modulated flattop

Q_extracted vs Q_input for different Trms(ps), modulated flattop

LPS, X-projection and current profile at z=4.61 m

Flattop, Q_input=3.5 nC

Modulated flattop, Q_input=3.9 nC

Transport to plasma cell entrance with SC code

Imain=382 A High.Q1: 3.8311 T/m High.Q2: -4.6985 T/m High.Q3: 1.1620 T/m High.Q4: 1.4157 T/m

LPS, X-projection and current profile at z=6.21 m

> Flattop, Q_input=3.5 nC

Modulated flattop, Q_input=3.9 nC

Issues/discussion

- Not possible to reproduce the experimental LT-curve
- Due to strong space charge, beam expands enormously (~2 times longer than experimental values)
- Not really a flattop

- Checked if Core_and_halo plays a role no big difference
- Check ASTRA built-in plateau distribution not yet done
- Increase BSA/decrease charge in order to sit on the linear part of LT slope(?)
- Find an initial distribution shape in order to optimize emission?

Initial distribution without Core and Halo, z=0.2m

> 0.3 nC

> 3.9 nC

Osip Lishilin | First troubles with simulations for PWFA@PITZ | 2016-12-01 | Page 14

Electron beam length vs Q_extracted at z=0.2 m for different Trms(ps), modulated flattop

Osip Lishilin | First troubles with simulations for PWFA@PITZ | 2016-12-01 | Page 15