Summary of the dE experiment with the short Gaussian laser

01.12.2016

Working points for short Gaussian laser pulse

Gun gradient (MV/m)	60			
Gun phase	MMMG			
Laser temporal profile	~ 2 ps FWHM			
Booster phase	Make an upright phase-space on the screen			
Charge (pC)	200	100		
BSA (mm)	0.85	0.75		
	<u> </u>	1.70		

Motivation of the four working points:

We were not sure what we could measure because of the resolution (~2 keV without binning, 4~5 keV with 2x2 binning), these working points were proposed in order to see distinguishable measurement results!

TDS scan to find the best TDS set point (0.2 nC, BSA 0.85 mm)

- Laser transverse distribution at VC2
- MMMG gun phase
- Laser attenuator scan bunch charge
- Beam momentum at HEDA1 with booster phase scan
- Main solenoid current scan beam size at HIGH1.Scr1
- Emittance at EMSY1 (increase the solenoid current with the best focus by 1%)
 2.2 μm, 375 A
- Gregor wrote a nice script to quickly analyze the slice energy spread at HEDA2
- Main solenoid current changed to get a nice phase-space on the screen
- Slice energy spread measurement
- Re-measured the emittance

3.8 μm, 386 A, MMMG

Bunch length measurement

10.66 ± 0.41 ps (2.59/2.64 ps **FWHM** size of unstreaked beam)

Summary of the typical results

Bunch charge (pC)	RMS laser spot (mm)	I _{main} (A)	Emittance ¹ (µm)	Bunch length (ps)	min δ _u ² (keV)
100	0.182/0.195	387	3.5	7.00 ± 0.15	7.0
	0.369/0.375	371	1.9	4.20 ± 0.18	8.2
200	0.201/0.214	386	3.8	10.66 ± 0.41	8.6
	0.423/0.428	371	2.1	5.80 ± 0.16	9.4

[1] At MMMG phase[2] Central slice picked up by hand

$$\delta_{E}^{measured} \approx \sqrt{\left(\delta_{E}^{real}\right)^{2} + \left(\delta_{E}^{\beta}\right)^{2} + \left(\delta_{E}^{TDS}\right)^{2}}$$

TDS scan to find the best TDS set point (200 pC, BSA 0.85 mm)

Comparison between the MMS and MMMG phases (100 pC, BSA 0.85 mm)

MMMG phase

376.7 A 32.6 22.65 22.7 22.75 22.8 momentum (MeV/c)

We confirmed that we were using the better main solenoid and booster phase setup.

386.7 A

Emittance scan (100 pC, rms laser spot 0.175/0.193 mm)

387

Emittance scan (200 pC, rms laser spot 0.203/0.216 mm)

386