Beam based Gun RF fields asymmetry studies.

Content:

- ✓ Motivation
- ✓ Method
- ✓ Experiment data analysis and simulation
- ✓ Summary and conclusions

Quantang Zhao PPS, Zeuthen 2016.11.10

Motivation

RF field asymmetry observed from simulation.

Questions:

#Previous studies results:

- The rotated quads position and rotation angle were estimated by ASTRA simulation:
- Position: around z=0.18m, at the transition region of coupler to gun cavity
- Rotation angle: Skew quads[45 degree (negative polarity) or ~135 degree(positive polarity)].
- > Polarity: same, not effected by solenoid field polarity.
- Position: around z=0.36m, near the exit region of the solenoid
- Rotation angle: normal quads.
- Polarity: when change the solenoid polarity, the quads polarity also changed.

- Check the Gun RF field asymmetric or not with beam.
- If Gun RF field is asymmetirc, what is the strength of the quadrupole component field from this asymmetric RF field?

#Quantang Zhao, PITZ physics Seminar, Zeuthen, 26.05.2016

Method: beam based laser grid experiment

Laser grid experiment

1 Move the laser position at the cathode at 5 positions (0,1,2,3,4);

2 With each laser position measure the beam position at low.scr1 only with gun field (main and bucking solenoid off).

Experiment (1) for different gun power: settings for 1.5 MW

1.5 MW power in the gun(2016.15.10 n shift) BSA0.9mm, laser spot size xrms 0.201mm, yrms 0.215mm Laser transmission 2%, charge ~15 pC

$p_{mean} = (3.3368 \pm 0.0019) MeV/c$ Phase: 3° p_{BMS} = (17 \pm 2)keV/c Statistics (Img): 50 Statistics (Bkg): 50 12000 Imain = 220.8A Measured at: LEDA Idip = -0.83929A Stats: Img(Bkg): 30(10) 10000 _max = (3.3357 \pm 0.0014)MeV/c at 6° 3 pulses 100 LT = 67%SP-Pforw = 28.9 200 8000 Power = 1.28MW p_{min}^{RMS} = (12 \pm 2)keV/c at 4° Reflection = 70%% [xd] 300 6000 400 3.345 4000 500 600 3.34 2000 400 100 200 300 500 x [pxl] 3.335 3.3 3.2 3.25 Mean Momentum [MeV/c] RMS Momentum [keV/c] 3.33 3.325 20 1.5 MW in the gun, 3.32 Laser position(0,0), 3.315 beam distribution at 3.31 low scr1 10 3.305 3.3└ _15 -10-5 0 5 10 15 20 SP Phase Gun [deg]

3.3368MeV/c→28.605MV/m

3.35

3.4

Experiment (1) for different gun power : settings for 3 MW

3 MW in the gun Laser position(0,0), beam distribution at low scr1

4.614MeV/c→40.87MV/m

Experiment(1) results: compare results for 1.5 MW and 3MW

laser relative position for 1.5 MW -3 MW

laser position difference	Deltx/mm	Delty/mm
L10-3L10	-0.012	-0.001
L20-3L20	-0.009	0.012
L30-3L30	-0.003	-0.006
L40-3L40	-0.01	0.004

Beam position for 1.5MW, 10 pC and 3MW, 25 pC

Beam relative position 1.5 MW -3 MW

beam position 1.5MW-3MW	Deltx/mm	Delty/mm
B10-3B10	0.094	-0.196
B20-3B20	0.054	0.168
B30-3B30	0.117	0.29
B40-3B40	0.505	0.163

Experiment(1) results and simulation

Quads like field behavior on the beam position

	3.0 MW compensation with single norm quads or skew quads								
	skew field/T/m	sim_sQx	sim_sQy	normal fields/T/m	sim_nQx	sim_nQy			
10	10 0.139 0.058 3.43		-0.19	0.236	3.72				
20	0.3	3.27	-0.101	-0.226	3.62	-0.28			
30	0.116 -0.019 -3.42		0.006	-0.18	-3.43				
40	0.0798	-3.348	0.192	0.116	-3.519	0.287			

x beam relative position/mm

Laser relative position:

-		
	<χ>	<y></y>
10	0.078	1.05
20	1.008	-0.094
30	-0.056	-1.045
40	-1.023	0.092

Quads length 0.01m

sim10

sim20

sim30

sim40

xex10

×ex20

▲ ex30 ■ ex40 ■ sQcom10 ● sQcom20 ■ sQcom30

▲sQcom40

×nQcom1

×nQcom2

nQcom3
 +nQcom4

- From previous studies Assuming the asymmetric RF field are quads like field.
- Rotated quads can be decomposed into Normal quads and skew quads.
- Quads like field behavior observed by simulation: Skew quads: like rotating Norm quads: like scaling.

Quads like fields estimated for 3MW

Gun field asymmetry estimated from simulation for 3 MW :

Quads like fields estimated for 1.5 MW

Gun field asymmetry estimated from simulation for 1.5 MW :

Asymmtric fields analysis for 3MW and 1.5 MW

3MW quads						
com	Skew /[T/m]	Normal/[T/m]	simQX	simQY	exX	exY
10	-0.1285	0.2	0.052	3.72	0.056	3.722
20	0.153	-0.24	3.62	-0.068	3.627	-0.062
30	-0.116	-0.005	-0.019	-3.414	-0.019	-3.438
40	0.06735	-0.12	-3.516	0.194	-3.512	0.199

1.5MW quads com	Skew /[T/m]	normal /[T/m]	simQX	simQY	exX	exY
10	-0.0214	0.12	0.15	3.5189	0.15	3.526
20	0.177	-0.3	3.658	0.1096	3.681	0.106
30	-0.1531	-0.07	0.0998	-3.149	0.098	-3.148
40	-0.0184	0.13	-3.002	0.358	-3.007	0.362

10 the quads strength for 3 MW are higher than 1.5 MW, But for other position the quads stength for 1.5 MW are close or even a bit higher.

Asymmtric fields are not scaled with different gun power from simulation, Is it time dependent?

MMMG phase different: 1.5 MW: 3 degree

- 3 MW: -12 degree
- The quads like field strength is on the order of ~10e-3T for 1.5 MW and 3 MW in the gun.

Experiment (2):different Gun phase, 1.5 MW

1.5 MW power in the gun BSA 0.9 mm, laser spot size xrms 0.201mm, yrms 0.215mm Laser transmission 2%, charge ~10 pC

3.3546MeV/c→28.78MV/m

For each laser position, scan the gun phase to get the beam position at low.scr1.

The Gun phase effect on the beam position.

From experiment.

1.5MW, no solenoid, laser_pos0,GUN phase at MMMG-30 degree (-25 degree)

<x>=-5.229m <y>=1.592mm xrms=2.172mm yrms=2.216mm

1.5MW, no solenoid, laser_pos0,GUN phase at MMMG(+5degree)

<x>=-4.997m <y>=1.088mm xrms=2.133mm yrms=2.216mm

From simulation, pos40,xoff=-1.024mm, yoff=0.063mm

Experiment(2) results: comparing with simulation results

		5			♦ 10_5 ■ 105	laser	<χ>	<γ>
		1 ex 🔁 👝			▲1015	10	0.065	1.004
		4			×1025 ¥20 5	20	1.006	-0.101
		1 sim			• 205	30	-0.048	-1.073
		3 3			+2015	40	-1.024	0.063
		Deltx1_av=0.146 mm Delty1_av=-0.310 mr	n		-2025 -30_5 •305 			
F	Deltx4_av=-0.220mm		Deltx2	av=-0.187 mm	▲ 3025 × 40_5			
Ē	Delty4_av=0.087mm	1	Deltv2	av=-0.430 mm	×40_5 ×405			
Ē	4 sim	1			• 4015	Deltx=	ex_X-si	m_X
Ĕ		4 2		2 ex	+4025 -sim10_5	Delty=	ex_Y-sir	n_Y
õ		•0		<u>- ⊬ - </u> + - ,	sim 105			
Š.	5 -4 ^{4 ex} -3 -2	-1 0 1	2 3	≜ × ж 4 ● \$	sim1015			
at i		-1 4 2		2 sim	▲ sim 20_5			
9		- 3			$\times sim 20_{-5}$			
>		Dolty? $av = 0.150 \text{ mm}$			∦ sim 2015 ● sim 2025			
		$Dolty_2 = 0.130 mm$			+ sim 30_5			
			•		= ssim 305 = sim 3015			
		-3 🖻			sim 3025			
		3 sim 3 ex			■ sim 40_5 ▲ sim 405 × sim 4015 ¥ sim 4025	≻ Co F	onfirm t RF fields	he Gun s are
					◆L10	a	symme	ertic!
		₅ _ا x relative position/m	m		▲ L30 ● L40			

The phase for position from small to big is from MMMG phase -10 degree step.

Page 14

Gun Phase effect on the beam relative position compared with simulation

Different beam relative positions are observed for phase scan compared with simulation

Quads like fields estimated for the experiment(2)

Quads like fields strength from simulation for fitting to the experiment results, quads length 1cm.

Gun phase with respect to MMMG /degree

For same phase, the skew quads and normal quads are different for different laser position, → The quads like field are irregular, transversely distribution is not asymmetric.

For different phase at same laser position, the quads like field is also different, specially for pos20 and pos40.

→It seems the quads like fields are time dependent.

> Gun RF field asymmetry was observed by laser grid experiment compared with simulations.

 \rightarrow From two experiments, the RF field asymmetry can be confirmed.

- From data analysis, the rotated-quads like field from RF fields is also asymmetric. At each laser position, use a pair of skew and normal quads (rotated quads) can fit the beam position to experiment. It also seems these quads like fields are time dependent.
- The quads like field strength for gun 1.5 MW and 3 MW is on the orders of ~10e-3 T, assuming at position z=0.18 m.

Next step:

Finish the laser grid experiment data analysis for 3MW and 5MW with solenoid.

→ongoing

?More:

Lase grid experiment with designed compensation quads...

Beam offset position as function of the gun gradient

Beam position at z =0.803m with xoff=yoff=1mm at cathode

Beam offset as a function of the gun gradient (momentum) looks like sine function.

