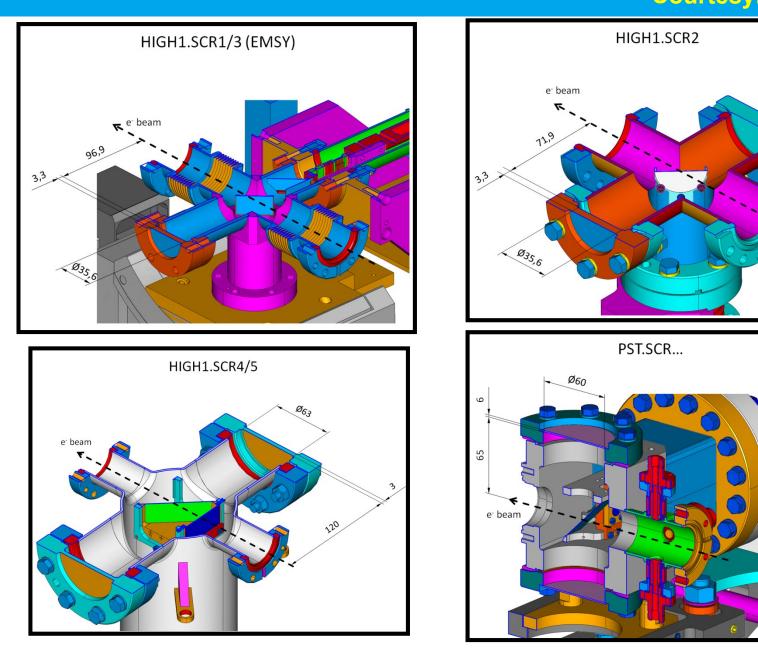
Design Consideration of CTR/CDR Station at PITZ

Prach Boonpornprasert

27.09.2016

Outline

- Selection of screen stations to use as a CTR/CDR station
- Transition radiation calculations
- THz diagnostics
- What to prepare/buy?
- Summary
- Outlook



- There are 4 types of screen stations downstream from the booster
 - EMSY screens: HIGH1.SCR1/3
 - Beamlet collector screens: HIGH4.SCR4/5
 - PST screens
 - HIGH1.SCR2
- Conditions for the selection are:
 - Viewport is available for a THz viewport
 - Largest acceptance angle

Selection of screen stations (2)

Selection of screen stations (3)

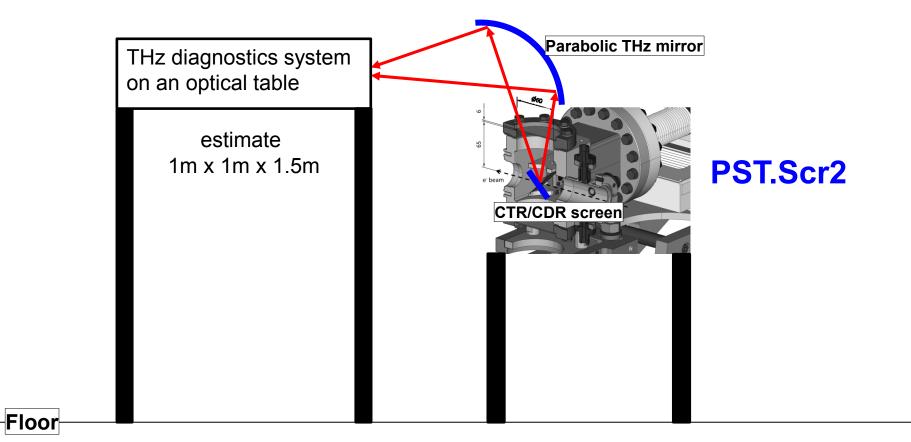
Courtesy: S.Philips

The best!

	EMSY	H1.S2	H1.S4/5	PST.SCR
Viewports Material Size	MDC 9722005-1 Fused silica CF 40	MDC 9722005-1 Fused silica CF 40	VAB SFK 63 Kodial CF 63 🗸	VAB SFK 63 Q Fused silica CF 63
Number available viewports	1	2 🗸	2 🗸	2 🗸
Drive system	Stepper motor 🗸	Pneumatic	Pneumatic	Stepper motor 🗸
Number of actuators needed for 3 screens*	1 🗸	2	2	1 🗸
Rotation possible	Yes 🗸	no	no	no
Viewport diameter (mm)	35.6	35.6	63	60
Distance from centre of screen to viewport (mm)	96.9(+3.3)	71.9(+3.3)	120(+3)	65(+6)
Acceptance angle (rad) **	0.1758	0.2324	0.2507	0.3998 🗸

* 3 screens consist of YAG screen, CTR screen and CDR screen.

** Acceptance angle = tan⁻¹ [(viewport radius) / (distance from center of screen to viewport)]


PST.Scr2 is the best option because:

- Both available viewports of PST.Scr1 are already occupied.
- PST.Scr1 is mainly used for another TDS measurement, not proper to use as THz radiation station.
- PST.Scr2 is located downstream from the TDS so longitudinal beam profiles for THz generations can be measured beforehand.
- Space around PST.Scr2 is available to install additional components.

Preliminary Layout of the CTR/CDR Station

Transition Radiation Calculation

Single electron, Backward radiation 45° incidence

Radiation intensity for backward transition radiation contributed from the parallel and perpendicular polarization can be expressed as

$$\frac{\mathrm{d}W}{\mathrm{d}\Omega\mathrm{d}\omega} = \frac{\mathrm{d}W^{\parallel}}{\mathrm{d}\Omega\mathrm{d}\omega} + \frac{\mathrm{d}W^{\perp}}{\mathrm{d}\Omega\mathrm{d}\omega}.$$
(1.5)

For a perfectly conducting medium $(\varepsilon \rightarrow \infty)$, the two components are

$$\frac{\mathrm{d}W^{\parallel}}{\mathrm{d}\Omega\mathrm{d}\omega} = \frac{e^2\beta^2\cos^2\psi}{\pi^2c} \left[\frac{\sin\theta - \beta\cos\phi\sin\psi}{(1 - \beta\sin\theta\cos\phi\sin\psi)^2 - \beta^2\cos^2\theta\cos^2\psi}\right]^2, \qquad (1.6)$$

$$\frac{\mathrm{d}W^{\perp}}{\mathrm{d}\Omega\mathrm{d}\omega} = \frac{e^2\beta^2\cos^2\psi}{\pi^2c} \left[\frac{\beta\cos\theta\sin\phi\sin\psi}{(1-\beta\sin\theta\cos\phi\sin\psi)^2 - \beta^2\cos^2\theta\cos^2\psi}\right]^2.$$
(1.7)

For a case of 45° incidence ($\psi = 45^{\circ}$), which is used extensively in our experimental setup, the two components reduce to

$$\frac{\mathrm{d}W^{\parallel}}{\mathrm{d}\Omega\mathrm{d}\omega} = \frac{e^2\beta^2}{2\pi^2c} \left[\frac{2\sin\theta - \sqrt{2}\beta\cos\phi}{(\sqrt{2} - \beta\sin\theta\cos\phi)^2 - \beta^2\cos^2\theta} \right]^2 \tag{1.8}$$

$$\frac{\mathrm{d}W^{\perp}}{\mathrm{d}\Omega\mathrm{d}\omega} = \frac{e^2\beta^2}{2\pi^2c} \left[\frac{\sqrt{2}\beta\cos\theta\sin\phi}{(\sqrt{2}-\beta\sin\theta\cos\phi)^2 - \beta^2\cos^2\theta} \right]^2. \tag{1.9}$$

In these formulas, θ represents the angle between the direction of emitted radiation **n** and the $-\mathbf{z}$ axis while ϕ is the azimuthal angle defined in the xy-plane with respect to the $-\mathbf{x}$ axis.

Reference: C.Settakorn, SLAC-r-576

Transition Radiation Calculation(2)

Single electron, Backward radiation 45° incidence

Factor of 10 different between 5 MeV and 25 MeV cases

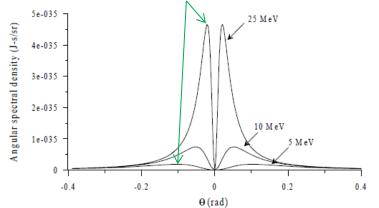


Figure 1.4: Angular distributions of normal incident transition radiation generated by 5 MeV, 10 MeV and 25 MeV electrons.

5 MeV
$$\rightarrow \gamma = 10.78$$

0.4 rad $= \frac{0.4}{\left(\frac{1}{\gamma}\right)} \left(\frac{1}{\gamma}\right) = \frac{4.312}{\gamma}$

Reference: C.Settakorn, SLAC-r-576

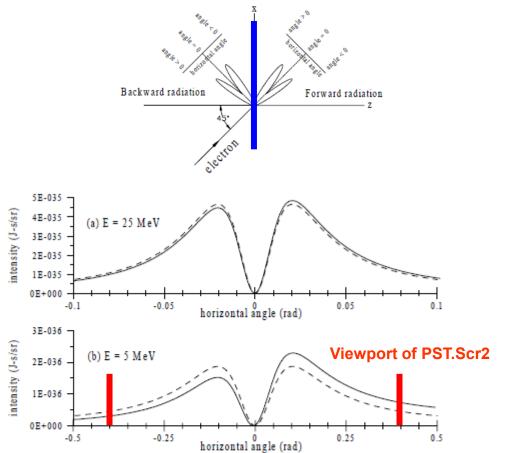


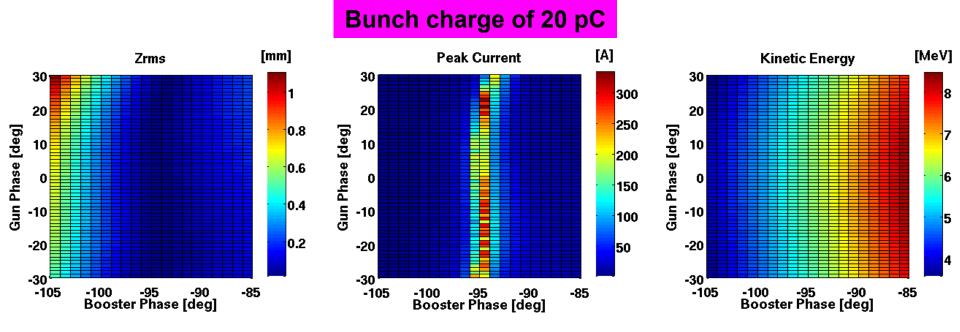
Figure 1.8: Angular distribution along the zero vertical angle of the radiation emitted from a 25 MeV (a) and a 5 MeV (b) electron for the case of normal incidence (dashed-line) and 45° -incidence (solid).

Transition Radiation Calculation(3)

Electron bunch, Backward radiation Reference: S.Casalbuoni et al., TESLA 2005-15 Normal incidence

- CTR calculations were performed by using Ginzburg-Frank formula
- Assumptions:
 - The radiation screen is a finite circular metallic screen with the radius a.
 - Electron beam with transverse radius of r_b impinges normally to the screen.
- The spectral and spatial radiation energy in the far-field regime for backward CTR are given by

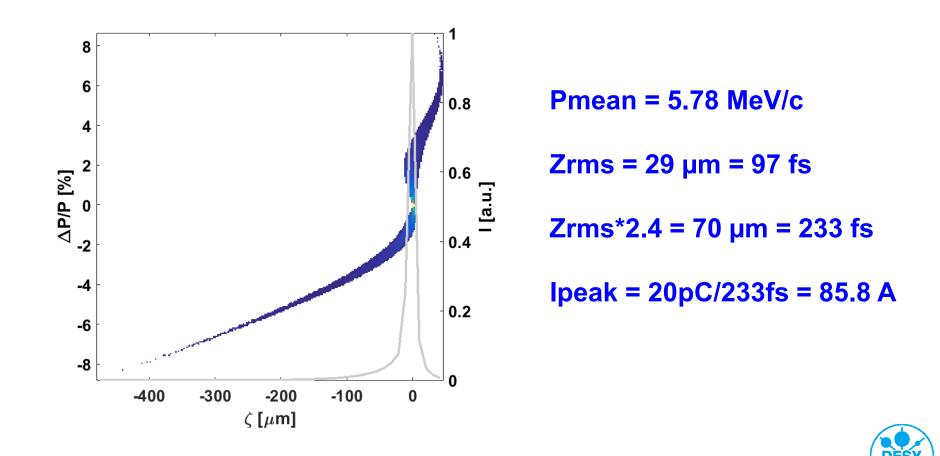
$$\frac{d^2 U_{\text{bunch}}}{d\omega d\Omega} = \frac{e^2}{4\pi^3 \varepsilon_0 c} \frac{\beta^2 \sin^2 \theta}{(1 - \beta^2 \cos^2 \theta)^2} \cdot N^2 |F_{long}(\omega)|^2 \cdot \left[\frac{2c}{\omega r_b \sin \theta} J_0\left(\frac{\omega r_b \sin \theta}{c}\right) - \frac{2c\beta\gamma}{\omega r_b} I_0\left(\frac{\omega r_b}{c\beta\gamma}\right) T(\gamma, \omega a, \theta)\right]^2$$
Longitudinal Form factor of the e-beam
$$F_{long}(\omega) = \int_{-\infty}^{+\infty} \rho_{long}(t) e^{-i\omega t} dt$$


$$T(\gamma, \omega a, \theta) = \frac{\omega a}{c\beta\gamma} J_0\left(\frac{\omega a \sin \theta}{c}\right) K_1\left(\frac{\omega a}{c\beta\gamma}\right) + \frac{\omega a \sin \theta}{c\beta^2 \gamma^2 \sin \theta} J_1\left(\frac{\omega a \sin \theta}{c}\right) K_0\left(\frac{\omega a}{c\beta\gamma}\right)$$

Electron bunch, Backward radiation Normal incidence

Example PITZ Beam for the calculation (Selected from the previous simulation work)

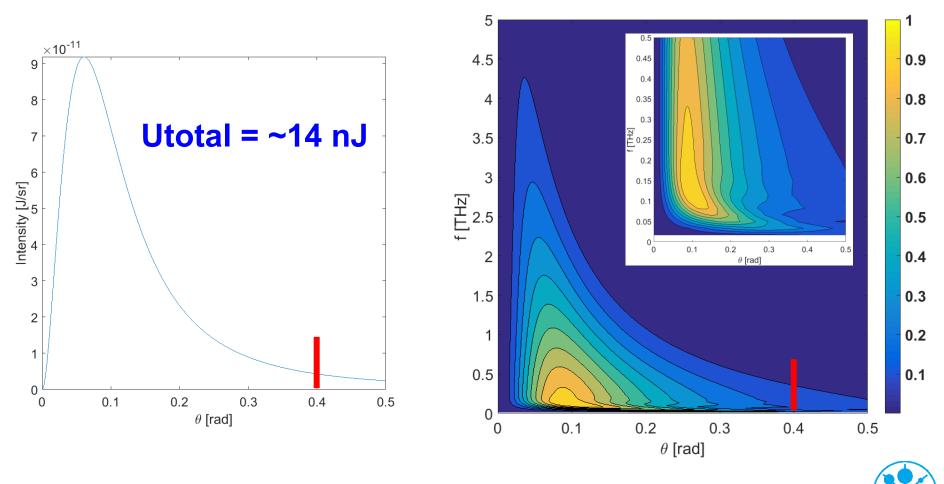
Beam from Φgun = 22° and Φbooster = -95° was selected. (see profiles in the next slide.)



Transition Radiation Calculation(5)

Electron bunch, Backward radiation Normal incidence

Longitudinal profiles of the example beam



Transition Radiation Calculation(6)

Electron bunch, Backward radiation Normal incidence

Calculated CTR energy from the example beam

3 DE

THz Diagnostics

THz energy/power measurement

- Detector choices: Golay, <u>Pyroelectric</u>, Bolometer, EOS
- Frequency Measurement
 - Michelson Interferometer, Martin-Puplett interferometer
 - Applications: bunch length measurement, bunch profile reconstruction
- Spatial distribution measurement
- Polarization measurement
- Electric fields profile measurement ?
- THz diagnostics planned to have 2 setups:
 - 1. For Michelson Interferometer (MIF)
 - 2. For Spatial distribution measurement (SD) ?

What to prepare/buy ?

- THz detector: Pyroelectric detector
- Signal amplifier ?
- CTR screen(s) and CDR screen(s)
- THz viewport
- Parabolic mirror (first mirror after the viewport) and its holder
- Optical table (estimate 1m x 1m x 1.5m)
- Components of Michaelson interferometer
 - 2 THz mirrors, beam splitter, moving stage actuator …
- Moving stage actuator (for the spatial distribution measurement)
- THz polarizer
- Frequency filter ?
- Controller!

PITZ

Companies to look for...

PST.Scr2 is ideal station to modify to be CTR/CDR station

- Largest acceptance angle, 5 MeV beam is possible to use.
- Downstream from TDS, beforehand/crosscheck bunch length measurement can be done.
- Design consideration of CTR/CDR station at PITZ has been started.
- Challenges (difficulties)
 - Experience with THz CTR/CDR generation experiments
 - Low electron beam energy, 5 MeV
 - Water absorption of THz radiation → Dry gas/In-vacuum diagnostics
 - Timeline
 - Go towards publication(s)

Outlook

PIT Z Photo Injector Test Facility

Finalize the design

- Calculation of radiation transport (Zemax)
- List components with company's product names
- Discuss with engineers and THz experimental experts
- Finalize the design
- Order the components
- Install the components
- \blacktriangleright Beam dynamics simulations \rightarrow radiation calculations
- Detailed experimental plan
- THz generation (CTR/CDR) experiments

Appendix

Homemade Michelson Interferometer

Reference: C.Settakorn, SLAC-r-576

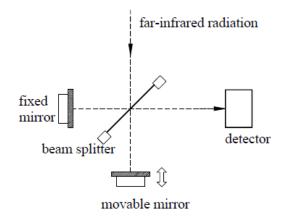


Figure 3.8: A schematic diagram of a Michelson interferometer.

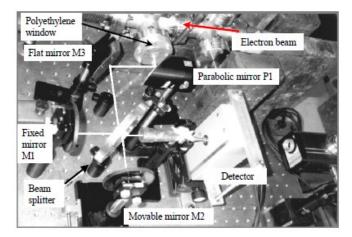


Figure 3.12: The Michelson interferometer setup with the white trace representing the radiation path.

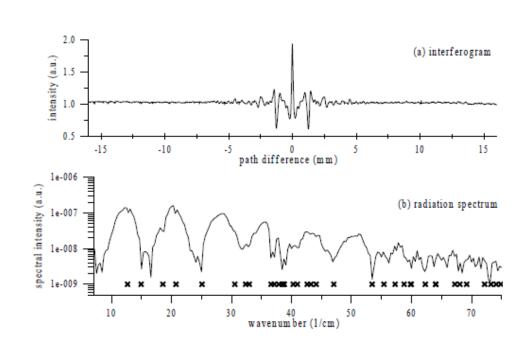


Figure 3.13: (a) interferogram and (b) radiation spectrum obtained from the Michelson interferometer set up in ambient air.

Spatial Distribution(+polarization) Measurement Setup

Reference: C.Settakorn, SLAC-r-576

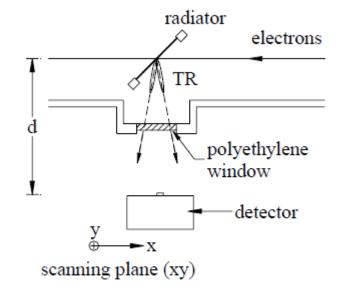


Figure 4.7: Experimental setup diagram for the total energy meaurement and for the radiation distribution measurement.

