Simulations with rotation quads model for beam asymmetry studies (updated)

* Basic idea and method.
* Some investigations
- Based on quads rotation angle and position in ASTRA simulation.
* Beam simulation with rotation quads for beam wings
- 5 MW in the gun.
- 3 MW in the gun.
- 1.5 MW in the gun.
* Conclusions

Quantang Zhao PITZ physics Seminar Zeuthen, 26.05.2016

Basic idea: Quads like field from coupler kicker or/and solenoid

\#1 Rotational thin Quads can be used for compensation the coupler kicker:

$\tilde{\theta}_{q}\left(\phi_{s}\right)=\frac{1}{2} \tan ^{-1} \frac{v_{x y}^{r} \cos \phi_{s}-v_{x y}^{i} \sin \phi_{s}}{v_{x x}^{r} \cos \phi_{s}-v_{x x}^{i} \sin \phi_{s}}$
$\frac{1}{\tilde{f}_{q\left(\phi_{s}\right)}}=\frac{e V_{a c c}}{\beta \gamma m c^{2}} \sqrt{\left(v_{x x}^{r} \cos \phi_{s}-v_{x x}^{i} \sin \phi_{s}\right)^{2}+\left(v_{x y}^{r} \cos \phi_{s}-v_{x y}^{i} \sin \phi_{s}\right)^{2}}$

* Quantang Zhao PITZ physics Seminar Zeuthen, 09.02.2016
\#2 Quads used for compensation of quads like field from the solenoid:

Solenoid multipole field measurement with rotating coil sensor.

Figure 9: The amplitude and phase of the dipole, quadrupole, and sextupole terms as a function of longitudinal position at a current of 100 A .

Figure 11: The 4 wire quadrupole corrector attached to a $2.85^{\prime \prime}$ OD acrylic tube is
shown. The single wire starts and ends on the left. Adjacent wires have identical current but opposite polarity forming a quadrupole in the center of the tube.

Figure 12: The multi-pole amplitudes as a function of corrector current with the solenoid current at 0 A is plotted on the left. On the right is the multi-pole amplitude as a function of solenoid current with the corrector at 2.7 A and 3.6 A for the solenoid current at 150 A and 200 A respectively.

Method

Use rotation quads model in ASTRA simulation by scanning the rotation angle and z position.
\rightarrow Find the parameters for beam images at high1 scr1 to fit the experiment images, the direction of the beam wings for both solenoid polarity.
\rightarrow 2D-3D space charge used in ASTRA simulation, z_trans $=0.12 \mathrm{~m}$.
Q_length $(1)=0.01$,
Q_K(1)=+-0.6,
Q_pos(1) $=x \cdot x$. ,
Q_zrot(1)= y.yy
Pgun=5MW, 6.178 MeV/c, gradient is 54.2 MV/c

$Z=0.18, Q _k=-0.6, Q _z r o t=135$ degree

Rotation quads simulation analysis results, at $\mathbf{z}=0.18 \mathrm{~m}$.

Rotation quads simulation analysis results: beam wings direction fit. Z $=0.18 \mathrm{~m}$

\rightarrow Skew quads

The quads rotation angle around 45 degree with positive polarity. The quads rotation angle around 135 degree with negative polarity.
\rightarrow the rotation quads have same polarity when change the solenoid polarity.

Rotation quads simulation analysis results, $\mathbf{z}=0.34 \mathrm{~m}$.

Rotation quads simulation analysis results: beam wings direction fit, $\mathrm{z}=0.34 \mathrm{~m}$

\rightarrow nomal quads

 The quads rotation 0,90 , 180 degree.\rightarrow the quads also changes its polarity when change the solenoid polarity.

Rotation quads simulation analysis for other positions

start angle, 0 degree	nsnq[deg]	nspq[deg]	psnq[deg]	pspq[deg]
0.18 m	150	60	30	120
0.28 m	125	35	55	145
0.34 m	110	20	70	160

$$
y=-x+K
$$

K is the beam wings clockwise rotational angle, when the quads rotation angle is 0 degree (initial set value).

\checkmark Rotation quad position at $z=0.24 \mathrm{~m}, 0.28 \mathrm{~m}, 0.30 \mathrm{~m}$ are also analysed, could not find right rotation angle fit to the beam wings direction for both negative and positive solenoid current. Data file are saved at $\mathrm{N}: \backslash 4 \mathrm{groups} \backslash z n _p i t z \backslash N F S I D a t a \backslash B e a m _I m p e r f e c t i o n s _S t u d i e s \backslash S i m u l a t i o n s \backslash A S T R A _r o t a t i o n a l _q u a d s . ~$

Beam simulation with skew quads at $\mathbf{z}=0.18 \mathrm{~m}$ for beam wings

\rightarrow All ASTRA simulation set up are same with experiment set up, beam momentum and solenoid current.
\rightarrow When the rotation angle is 135 degree, the quads polarity should be negeative.
Pgun=5MW, 6.178 MeV/c, gradient is 54.2 MV/c, no booster 05.09A-06.09N.2015.

2D-3D space charge, z_trans $=0.12 m, Q _k=-0.6$

/skew quadrupole Q_type(1) = 'skew', Q_length(1)=0.01, Q_K(1)= XXX, Q_pos(1)=0.18,

2D space charge, Q_k= -0.2

Beam wings for 3 MW in the gun with skew quads at $\mathbf{z}=0.18 \mathrm{~m}$

3MW in the gun, momentum 4.848 MeV/c, gradient 42.2 MV/m

2D space charge, $Q _K=-0.3$.

.
\qquad

Beam wings for 1.5 MW in the gun with skew quads at $z=0.18 \mathrm{~m}$

Summary

\rightarrow Beam images at High1.Scr1 fit well with ASTRA simulation with skew quads model at z $=0.18 \mathrm{~m}$ for different gun gradient and different solenoid current.
\rightarrow In the table, the skew quads $Q _k$ is the minimum value from simulation when the beam wings can be observed.

Skew quads at $z=0.18 \mathrm{~m}$.

Power in the gun	Gradient (MV/m)	Momentu m (exp) ($\mathrm{MeV} / \mathrm{c}$)	Charge (pC)	$\begin{aligned} & \text { Skew } \\ & \text { Q_Position } \\ & (\mathrm{m}) \end{aligned}$	Beam momentum at $z=0.18$ (simu)	Skew Q_k (m^-2) (2D space charge/ 2D3D space charge)	$\begin{gathered} \text { Skew_Q } \\ {\left[\text { Gradient }^{*} \mathrm{q}\right]} \end{gathered}$	Skew Q_length (m)	Solenoid current(A) (for wings/tilt)
5MW	54.2	6.1	500	0.18	6.074	$\begin{aligned} & \sim<-0.2 \\ & \sim<-0.6 \end{aligned}$	$\begin{aligned} & \sim<-1.22 \\ & \sim<-3.64 \end{aligned}$	0.01	361/356
3MW	42.2	4.84	334	0.18	4.818	$\begin{aligned} & \sim<-0.3 \\ & \sim<-0.6 \end{aligned}$	$\begin{aligned} & \sim<-1.44 \\ & \sim \end{aligned}$	0.01	290/282
1.5 MW	31.4	3.69	334	0.18	3.685	$\begin{aligned} & \sim<-0.4 \\ & \sim<-1.5 \end{aligned}$	$\begin{aligned} & \sim<-1.47 \\ & \sim-5.52 \end{aligned}$	0.01	219/210

$B_{0} \rho=\frac{P_{0}}{q}, \quad k(s)=\frac{g(s)}{B_{0} \rho} \quad g(s)=k(s) \cdot P_{0} / \mathrm{q}$

Beam simulation with normal quads at $z=0.34 \mathrm{~m}$ for beam wings

\rightarrow All ASTRA simulation set up are same with experiment set up, beam momentum and solenoid current.
\rightarrow When the rotation angle is 90 degree, the quads polarity should be same with solenoid polarity for beam wings fit to experiment.

Pgun=5MW, 6.178 MeV/c, gradient is 54.2 MV/c, no booster 05.09A-06.09N.2015.

```
Q_length(1)=0.01
Q_K(1)=xxx
Q_pos(1)=0.34
Q_zrot(1)=1.5708 (90 degree)
```


2D-3D space charge, z_trans $=0.12 \mathrm{~m}$

$$
\text { Q_k= }-0.2
$$

356A

Q_k= 0.2

Beam asymmetry for 3MW in the gun, rotation angle 90 degree, at $\mathbf{z = 0 . 3 4 m}$.

3MW in the gun, momentum 4.848 MeV/c, gradient 42.2 MV/m

2D to 3D space charge, from $z=0.12 \mathrm{~m}$
Q_K= -0.3

$$
\text { Q_K= } 0.3
$$

Beam asymmetry for 1.5MW in the gun, rotation angle 90 degree at $\mathbf{z}=0.34 \mathrm{~m}$.
1.5 MW in the gun, momentum 3.691 MeV/c, gradient 31.4MV/m

Q_K= -1.0

Conclusions

> Beam images at High1.Scr1 fit well between experiment and ASTRA simulation with rotation quads model for different gun gradient and different solenoid current.
> The rotation quads position and rotation angle can be estimated by ASTRA simulation:
\checkmark Position: around $\mathrm{z}=0.18 \mathrm{~m}$
Rotation angle: Skew quads[45 degree(negative polarity) or ~ 135 degree(positive polarity)].
Polarity: same, not effected by solenoid field polarity.
\checkmark Position: around $\mathrm{z}=0.34 \mathrm{~m}(\sim 0.36 \mathrm{~m})$
Rotation angle: normal quads.
Polarity: when change the solenoid polarity, the quads polarity also changed.
> The non-ideal field for beam asymmetry are most probably around at $z=0.18 \mathrm{~m}$, the skew quads at the transition region of coupler to gun cavity, or/and at $z=0.34 \mathrm{~m}$, the normal quads near the exit region of the solenoid.
> Consider and design the skew quads and normal quads for beam asymmetry compensation with beam test....

Back slides

$Z=0.18, Q _k=-0.6$, different quad rotational angle field plot from ASTRA

Skew(135 degree)

$0.6 \mathrm{rad}, 34.4$ degree

0.1 rad, 5.73 degree

$0.8 \mathrm{rad}, 45$ degree

0.4 rad, 22.9 degree

2.356 rad, 135 degree

Beam ring from 1.5 MW simulation

-210A, 1.5 MW, 2D space charge

!Not flip horizontal

Beam asymmetry for 1.5 MW in the gun (core+halo GV model)

1.5 MW in the gun, momentum $3.691 \mathrm{MeV} / \mathrm{c}$, gradient $31.4 \mathrm{MV} / \mathrm{m}$

2D to 3D space charge, from $z=0.12 m, Q_{-} k=-2.0$

BSA 1.2 mm laser Distribution.

$-210 \mathrm{~A}$

W/o halo

219A

210A

2D space charge simulation

Beam asymmetry for 1.5 MW in the gun (core+halo MK model)

1.5 MW in the gun, momentum $3.691 \mathrm{MeV} / \mathrm{c}$, gradient $31.4 \mathrm{MV} / \mathrm{m}$

2D to 3D space charge, from $z=0.12 m, Q _k=-2.0$

BSA 1.2 mm laser Distribution.

P I T Z Q_k = -0.4

219A

210A

