Evaluation of the photocathode laser transverse distribution

Core + Halo Models

Chaipattana Saisa-ard PPS Meeting 07.04.16

Contents

- Introduction
- Motivation
- > Transverse Laser Profile Analysis
- Results
- Conclusions & Outlook

Introduction: Photo Injector Test Facility at DESY, Zeuthen site (PITZ)

Schematic of transverse laser profile measurement

Motivation

There is a problem concerning mismatch between output charge of beam dynamic simulation (ASTRA) and experiment.

QE is quantum efficiency of cathode E_{laser} is laser pulse energy

0.8 mm BSA

The measured transverse laser profile

The uniform charge distribution in simulation

Core+Halo Models

- > Assuming rotational symmetry (ASTRA emission model)
- We create three models named 'core+halo' to generate particle input distribution based on a measured laser transverse profile.

	Model 1.	Model 2.	Model 3.
r < Rc	P(r) = A = const	P(r) = A	P(r) = A + C
r > Rc	$P(r) = Ae^{-\frac{(r-R_c)^2}{2\delta^2}}$	$P(r) = Ae^{-\frac{(r^2 - R_c^2)}{2\delta^2}}$	$P(r) = Ae^{-\frac{(r-R_c)^2}{2\delta^2}} + Ce^{-\frac{(r-R_c)^4}{2\delta^4}}$

	Model 1.	Model 2.	Model 3.
A	515.2	514.6	462.5
R_c	0.363	0.380	0.362
δ	0.032	0.95	0.032
С	-	-	52.7

Procedure of Transverse Laser Profile Analysis

- Define the center of a laser beam profile by $\sum_{i=1}^{all} x_i \times I_i(x, y) = x_c$
- Average profile around the center, $P_{meas}(r) = \langle P_{\alpha} \rangle$

- The difference between the laser beam profile and a model, $\Delta(A, R_c, \delta, (C)) = \frac{\int_0^{R_c} |I_{meas} I_{model}|^r dr}{\int_0^{\infty} I_{meas} r dr} \rightarrow minimized$
- Core-halo qualities: ratio of halo to core, core modulation
- There are about 100 profiles within 0.3-2.0 mm BSA in 2015. All of them are analyzed with MATLAB

Results: Halo to Core Ratio

Results: Core Modulation (mod) Quality

Chaipattana Saisa-ard| Evaluation of the photocathode laser transverse distribution| 14|MAR Page 8

Results: Comparison of Charge Emission between Measurement and Simulations with/without Halo

Conclusions & Outlook

Conclusions

- Figure of merit was introduced for qualitative evaluation of the laser profile by implemented core+halo models.
- The growth of BSA decreases the halo effect
 - H2C $\propto \exp(-6.65^{*}BSA)$ for model 1
 - H2C \propto exp(-6.26*BSA) for model 2
 - H2C \propto exp(-6.70*BSA) for model 3
- For smaller BSA, the core modulation is occurred by diffraction while larger BSA it is occurred by non homogeneous core.
- Using core+halo models in beam dynamic simulation, the output charge results agree well to measurement.

<u>Outlook</u>

• The azimuthal homogeneity to be considered for qualitative evaluation.

Thank you for attention

Chaipattana Saisa-ard| Evaluation of the photocathode laser transverse distribution| 14|MAR Page 11