Using HEDA2 as a Bunch Compressor

- Motivation
- Transformation Matrices
$-2{ }^{\text {nd }}$ High Energy Dispersive Arm (HEDA2)
- ASTRA Simulations for the Input Beams
-Calculation of Bunch Compression by HEDA2
-Summary \& Outlook

Results of velocity bunching experiment (shifts: 30-31.10.15)

Machine Parameters	
Laser pulse shape	Gaussian
Laser temporal length	$\sim \mathbf{2 . 5} \mathbf{~ p s}$ FWHM
BSA	$2.0,2.5 \mathrm{~mm}$
Bunch charge	$20,100,250 \mathrm{pC}$
Peak power of RF in the gun	6.3 MW
Peak power of RF in the booster	2.7 MW
Gun phase*	0 degree
Booster phase* *	0 to -90 degree

FWHM bunch length VS booster phase

Calculated form factors

Selected long. bunch profiles

$$
\frac{d U_{C T R}}{d \omega} \propto\left|F_{l o n g}(\omega)\right|^{2}
$$

$$
F_{\text {long }}(\omega)=\int_{-\infty}^{\infty} \rho_{\text {long }} \exp (-i \omega t) d t
$$

Can HEDA2 be used as a bunch compressor?

Works in this presentation is trying to answer this question by using transformation matrices.

PIT_{2} Transformation Matrices

Ref: A.Chao Handbook, p.56-59, 1999 S.Rimjaem, HEDA2 note, 24.9.09 D.C.Carey, SLAC-R-530,

- A charged particle is represented by a vector $\boldsymbol{X}(\boldsymbol{s})$

$$
\boldsymbol{X}^{\boldsymbol{t}}(s)=\left[\begin{array}{llllll}
x(s) & x^{\prime}(s) & y(s) & y^{\prime}(s) & \ell(s) & \Delta p / p_{0}
\end{array}\right]
$$

- The vector $\boldsymbol{X}(0)$ at position 0 is transform to another vector $\boldsymbol{X}(s)$ at position \boldsymbol{s} by

$$
\boldsymbol{X}(s)=\boldsymbol{\mathcal { M }} \boldsymbol{X}(0)
$$

where \mathcal{M} is a $6 x 6$ matrix characterizing lattice(s) between 0 and s.
It is so called "transformation matrix".

- By assuming Δp and p_{0} are constant, x - and y -motions are decoupled and system have midplane symmetry about $y=0, \boldsymbol{X}(s)=\boldsymbol{\mathcal { C }} \boldsymbol{X}(0)$ can be expanded as

$$
\left[\begin{array}{c}
x(s) \\
x^{\prime}(s) \\
y(s) \\
y^{\prime}(s) \\
\ell(s) \\
\Delta p / p_{0}
\end{array}\right]=\left[\begin{array}{cccccc}
R_{11} & R_{12} & 0 & 0 & 0 & R_{16} \\
R_{21} & R_{22} & 0 & 0 & 0 & R_{26} \\
0 & 0 & R_{33} & R_{34} & 0 & 0 \\
0 & 0 & R_{43} & R_{44} & 0 & 0 \\
R_{51} & R_{52} & 0 & 0 & R_{55} & R_{56} \\
0 & 0 & 0 & 0 & 0 & R_{66}
\end{array}\right]\left[\begin{array}{c}
x(0) \\
x^{\prime}(0) \\
y(0) \\
y^{\prime}(0) \\
\ell(0) \\
\Delta p / p_{0}
\end{array}\right]
$$

${ }^{\text {PITZ Transformation Matrices (2) }}$

The final vector of the electron can be written as

$$
\left[\begin{array}{c}
x(s) \\
x^{\prime}(s) \\
y(s) \\
y^{\prime}(s) \\
\ell(s) \\
\Delta p / p_{0}
\end{array}\right]=\left[\begin{array}{c}
R_{11} x(0)+R_{12} x^{\prime}(0)+R_{16}\left(\Delta p / p_{0}\right) \\
R_{21} x(0)+R_{22} x^{\prime}(0)+R_{26}\left(\Delta p / p_{0}\right) \\
R_{33} y(0)+R_{34} y^{\prime}(0) \\
R_{43} y(0)+R_{44} y^{\prime}(0) \\
R_{51} x(0)+R_{52} x^{\prime}(0)+R_{55} \ell(0)+R_{56}\left(\Delta p / p_{0}\right) \\
R_{66}\left(\Delta p / p_{0}\right)
\end{array}\right]
$$

- Transformation matrix of a drift space with length of L

$$
\boldsymbol{M}_{\boldsymbol{D}}(L)=\left[\begin{array}{cccccc}
1 & L & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & L & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & \frac{L}{\gamma^{2}} \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

${ }^{\text {PITZ Transformation Matrices (3) }}$

- Transformation matrix of a sector magnet

${ }^{\text {PITZ Transformation Matrices (4) }}$

-Pole face rotation (wedge angle) matrix

$$
\boldsymbol{\mathcal { M }}_{\beta}=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
\frac{\tan \beta}{\rho} & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & -\frac{\tan \beta}{\rho} & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

- Transformation matrix of a sector magnet including wedge angles

$$
\mathcal{M}_{\text {SecD }}=\mathcal{M}_{\beta_{\text {out }}} \mathcal{M}_{\text {RecD }} \mathcal{M}_{\beta_{\text {in }}}
$$

Disp3.D1

Disp3.D2
Ref: PITZ3-Koordinaten_15-10-15.xIsx HEDA2-note, PITZ-wiki

Specifications of Dipole Magnets in the Second High Energy Dispersive Arm (HEDA2)

Parameter	Dipole 1	Dipole 2	Dipole 3
Tvne	sector	sector with exit wedge_angle	sector
Bending angle, α (degree)	60	120	60
Entrance wedge angle, $\beta_{\text {in }}$ (degree)	0	0	0
Exit wedge angle, $\beta_{\text {out }}$ (degree)	0	9	0
Bending radius, $\rho(\mathrm{mm})$	600	400	400
Maximum magnetic field (T)	0.23	0.34	0.34
Effective length (mm)	628.3	837.8	418.9
Pole gab (mm)	60	60	60
Vertical field homogeneity (dB/B)	$\pm 5 \times 10^{-4}$	$\pm 5 \times 10^{-4}$	$\pm 5 \times 10^{-4}$
Good field region in vertical direction (mm)	± 25	± 25	± 25
Good field region in radial direction (mm)	± 70	± 50	± 50

15 | Page

PITZ HEDA2: Tr. Matrices Used in This Work

$X_{\text {final }}=\mathcal{M}_{\text {SecD3 }} \mathcal{M}_{\text {D23 }} \mathcal{M}_{\text {SecD } 2} \mathcal{M}_{D 12} \mathcal{M}_{\text {SecD } 1} \boldsymbol{X}_{\text {initial }}$

${ }^{\text {PIT }}$ ASTRA Simulations for the Input Beams

Examples of Longitudinal Phase Space of the Output Beams with Imain = 330A

Input for ASTRA Simulation	
Zstart $\boldsymbol{\rightarrow}$ Zstop	$0 \rightarrow 6 \mathrm{~m}$
\# macroparticles	$\mathbf{2 0 k}$
Laser pulse shape	Gaussian
Laser temporal length	$\mathbf{2 . 4 3} \mathbf{~ p s ~ F W H M ~}$
Bunch charge	$\mathbf{1 0 0} \mathrm{pC}$
Laser BSA size	$\mathbf{2 ~ m m}$
Main solenoid current	$\mathbf{(2 3 0 : 1 0 : 3 3 0) ~ A}$
Peak field in gun	$60.5 \mathrm{MV} / \mathrm{m}$
Peak field in booster	$17.2 \mathrm{MV} / \mathrm{m}$
Gun RF phase*	0 degree
Booster RF phase*	$\mathbf{(- 9 0 : 3 0 : 9 0) ~ d e g r e e ~}$

*With respect to the Maximum Mean
Momentum Gain (MMMG) phase

Boo. Phase $=0^{\circ}$

Using HEDA2 as a Bunch Compressor | Prach Boonpornprasert | PITZ Physics Seminar | 24.03 .2015 | Page 11

${ }^{\text {PITZ }}$ Calculation of Bunch Compression by HEDA2

\rightarrow Energy-chirp with positive slope $\left(\Phi_{\text {booster }}=30^{\circ}\right), I_{\text {main }}=330 \mathrm{~A}$

$P_{\text {mean }}=19.67 \mathrm{MeV} / \mathrm{c}$
R56 $=\mathbf{-} 0.0232 \mathrm{~m}$

PITZ Calculation of Bunch Compression by HEDA2

- Energy-chirp with negative slope $\left(\Phi_{\text {booster }}=-30^{\circ}\right), I_{\text {main }}=330 \mathrm{~A}$

PITZ Calculation of Bunch Compression by HEDA2

- Energy-chirp with negative slope $\left(\Phi_{\text {booster }}=-60^{\circ}\right), I_{\text {main }}=330 \mathrm{~A}$

$P_{\text {mean }}=14.37 \mathrm{MeV} / \mathrm{c}$
$R 56=-0.0213 \mathrm{~m}$

Pitz Calculation of Bunch Compression by HEDA2

- Energy-chirp with negative slope $\left(\Phi_{\text {booster }}=-90^{\circ}\right), I_{\text {main }}=330 \mathrm{~A}$

$P_{\text {mean }}=7.27 \mathrm{MeV} / \mathrm{c}$
R56 $=\mathbf{- 0 . 0 1 0 3 m}$

${ }^{\text {PITIT C Calculation of Bunch Compression by HEDA2 }}$

-Summary Plot: bunch length VS booster phase

${ }^{\text {PITL }}$ Calculation of Bunch Compression by HEDA2

- Summary Plot: bunch length VS main solenoid current

- Bunch compression by HEDA2 was calculated by using transportation matrices.
- Can we use HEDA2 as a bunch compressor?
- Yes, we can! Some results show the compression but...
- Beam size and booster phase should be optimized further.
- Correction of the calculation script still has to be checked.
- Check correction of the calculation script:
- Different transformation matrices for HEDA2

■ Check with the Zeuthen Chicane

- Find the optimum transverse beam size and booster phase (investigation of the parameter space).
- More macro-particles for the initial beams
- HEDA2 transport simulations with ASTRA and CSRTrack
-S2E simulation, CTR Calculations
-Play with other bunch charges

BACKUP

A simple case of 4-bending magnet chicane

- Zeuthen Chicane : a benchmark layout used for CSR calculation comparisons at 2002 ICFA beam dynamics workshop

- Bend magnet length $: L_{B}=0.5 m$
- Drift length B1-B2 and B3-B4(projected) : $\Delta \mathrm{L}=5 \mathrm{~m}$
- Drift length B2-B3 : $\Delta L_{c}=1 \mathrm{~m}$
- Bend radius $\quad: \rho=10.3 \mathrm{~m}$
- Effective total chicane length $\left(L_{T}-\Delta L_{C}\right)=12 \mathrm{~m}$
- Bending angle : $\theta_{0}=2.77 \mathrm{deg}$

Bunch charge : $q=1 \mathrm{nC}$

- Momentum compaction: $\mathrm{R}_{56}=\mathbf{- 2 5} \mathrm{mm}$

Electron energy : $\mathrm{E}=\mathbf{5} \mathrm{GeV}$

- $2^{\text {nd }}$ order momentum compaction : $\mathrm{T}_{566}=38 \mathrm{~mm}$

Initial bunch length : 0.2 mm

- Total projected length of chicane : $L_{T}=13 \mathrm{~m}$

Final bunch length : 0.02 mm

PITZ Matrix Transportation for Dipole Magnet and Drift Spaces

1.3 Matrix Transportation for Dipole Magnet and Drift Spaces

Matrix transportation for the particle travels through the dipole magnet from the initial position $\left(S_{i}\right)$ to the final position $\left(S_{f}\right)$ as shown in Fig. 1 can be written as

$$
\begin{equation*}
M=M_{L_{\text {out }}} M_{D} M_{L_{\text {tn }}} \tag{14}
\end{equation*}
$$

where $M_{L_{\text {tn }}}$ and $M_{L_{\text {out }}}$ are the transport matrices for the drift spaces before and after the dipole magnet. The non-zero matrix elements in Eq. (14) are

```
```

$R_{11}=\cos \alpha\left[1+\frac{L_{\text {out }}}{\rho}\left(\tan \beta_{\text {in }}+\tan \beta_{\text {out }}\right)\right]+\sin \alpha\left[\tan \beta_{\text {in }}+\frac{L_{\text {oun }}}{\rho}\left(\tan \beta_{\text {in }} \tan \beta_{\text {out }}-1\right)\right]$,

```
```

$R_{11}=\cos \alpha\left[1+\frac{L_{\text {out }}}{\rho}\left(\tan \beta_{\text {in }}+\tan \beta_{\text {out }}\right)\right]+\sin \alpha\left[\tan \beta_{\text {in }}+\frac{L_{\text {oun }}}{\rho}\left(\tan \beta_{\text {in }} \tan \beta_{\text {out }}-1\right)\right]$,
$R_{12}=L_{\text {in }} \tan \beta_{\text {in }}\left[1+\frac{L_{\text {out }} \tan \beta_{\text {out }}}{\rho}\right]+\cos \alpha\left[L_{\text {in }}+L_{\text {out }}+\frac{L_{\text {in }} L_{\text {out }}^{p}}{\rho}\left(\tan \beta_{\text {in }}+\tan \beta_{\text {out }}\right)\right]+$
$R_{12}=L_{\text {in }} \tan \beta_{\text {in }}\left[1+\frac{L_{\text {out }} \tan \beta_{\text {out }}}{\rho}\right]+\cos \alpha\left[L_{\text {in }}+L_{\text {out }}+\frac{L_{\text {in }} L_{\text {out }}^{p}}{\rho}\left(\tan \beta_{\text {in }}+\tan \beta_{\text {out }}\right)\right]+$
$\sin \left[\alpha+L_{\text {out }}\left(\tan \beta_{\text {out }}-\frac{L_{\text {tu }}}{\rho}\right)\right]$,
$\sin \left[\alpha+L_{\text {out }}\left(\tan \beta_{\text {out }}-\frac{L_{\text {tu }}}{\rho}\right)\right]$,
$R_{16}=\rho(1-\cos \alpha)+L_{\text {out }}\left[\sin \alpha+\tan \beta_{\text {out }}(1-\cos \alpha)\right]$,
$R_{16}=\rho(1-\cos \alpha)+L_{\text {out }}\left[\sin \alpha+\tan \beta_{\text {out }}(1-\cos \alpha)\right]$,
$R_{21}=\frac{\cos \alpha}{\rho}\left(\tan \beta_{\text {in }}+\tan \beta_{\text {out }}\right)+\frac{\sin \alpha}{\rho}\left(\tan \beta_{\text {in }} \tan \beta_{\text {out }}-1\right)$,
$R_{21}=\frac{\cos \alpha}{\rho}\left(\tan \beta_{\text {in }}+\tan \beta_{\text {out }}\right)+\frac{\sin \alpha}{\rho}\left(\tan \beta_{\text {in }} \tan \beta_{\text {out }}-1\right)$,
$R_{22}=\stackrel{\rho}{\rho} \alpha\left[1+\frac{L_{\text {in }}}{\rho}\left(\tan \beta_{\text {in }}+\tan \stackrel{\beta}{\beta}_{\text {out }}\right)\right]+\sin \alpha\left[\tan \beta_{\text {out }}\left(1+\frac{L_{\text {in }} \tan \beta_{\text {in }}}{\rho}\right)-\frac{L_{\text {in }}}{\rho}\right]$,
$R_{22}=\stackrel{\rho}{\rho} \alpha\left[1+\frac{L_{\text {in }}}{\rho}\left(\tan \beta_{\text {in }}+\tan \stackrel{\beta}{\beta}_{\text {out }}\right)\right]+\sin \alpha\left[\tan \beta_{\text {out }}\left(1+\frac{L_{\text {in }} \tan \beta_{\text {in }}}{\rho}\right)-\frac{L_{\text {in }}}{\rho}\right]$,
$R_{26}=\sin \alpha+\tan \beta_{\text {out }}(1-\cos \alpha)$,
$R_{26}=\sin \alpha+\tan \beta_{\text {out }}(1-\cos \alpha)$,
$R_{33}=1-\alpha \tan \left(\beta_{\text {in }}-\psi_{\text {in }}\right)+\frac{L_{\text {oun }}}{\rho}\left[-\tan \left(\beta_{\text {in }}-\psi_{\text {in }}\right)-\tan \left(\beta_{\text {out }}-\psi_{\text {out }}\right)\right]+$
$R_{33}=1-\alpha \tan \left(\beta_{\text {in }}-\psi_{\text {in }}\right)+\frac{L_{\text {oun }}}{\rho}\left[-\tan \left(\beta_{\text {in }}-\psi_{\text {in }}\right)-\tan \left(\beta_{\text {out }}-\psi_{\text {out }}\right)\right]+$
$\frac{L_{\text {out }} \alpha}{\rho} \tan \left(\beta_{\text {in }}-\psi_{\text {in }}\right) \tan \left(\beta_{\text {out }}-\psi_{\text {out }}\right)$,
$\frac{L_{\text {out }} \alpha}{\rho} \tan \left(\beta_{\text {in }}-\psi_{\text {in }}\right) \tan \left(\beta_{\text {out }}-\psi_{\text {out }}\right)$,
$R_{34}={ }_{L_{\text {in }}}^{\rho}+L_{\text {out }}+\rho\left[\alpha-L_{\text {in }} \tan \left(\beta_{\text {in }}-\psi_{\text {in }}\right)-L_{\text {out }} \tan \left(\beta_{\text {out }}-\psi_{\text {out }}\right)\right]+\frac{L_{\text {in }} L_{\text {out }}}{\rho}$
$R_{34}={ }_{L_{\text {in }}}^{\rho}+L_{\text {out }}+\rho\left[\alpha-L_{\text {in }} \tan \left(\beta_{\text {in }}-\psi_{\text {in }}\right)-L_{\text {out }} \tan \left(\beta_{\text {out }}-\psi_{\text {out }}\right)\right]+\frac{L_{\text {in }} L_{\text {out }}}{\rho}$
$\left[-\tan \left(\beta_{\text {in }}-\psi_{\text {in }}\right)+\tan \left(\beta_{\text {out }}-\psi_{\text {out }}\right)+\alpha L_{\text {out }} \tan \left(\beta_{\text {in }}-\psi_{\text {in }}\right) \tan \left(\beta_{\text {out }}-\psi_{\text {out }}\right)\right]$,
$\left[-\tan \left(\beta_{\text {in }}-\psi_{\text {in }}\right)+\tan \left(\beta_{\text {out }}-\psi_{\text {out }}\right)+\alpha L_{\text {out }} \tan \left(\beta_{\text {in }}-\psi_{\text {in }}\right) \tan \left(\beta_{\text {out }}-\psi_{\text {out }}\right)\right]$,
$R_{43}=-\frac{\tan \left(\beta_{t n}-\psi_{t n}\right)}{\rho}-\frac{\tan \left(\beta_{\text {out }}-\psi_{\text {out }}\right)}{\rho}+\frac{\alpha \tan \left(\beta_{i n}-\psi_{\text {in }}\right) \tan \left(\beta_{\text {out }}-\psi_{\text {out }}\right)}{\rho}$,
$R_{43}=-\frac{\tan \left(\beta_{t n}-\psi_{t n}\right)}{\rho}-\frac{\tan \left(\beta_{\text {out }}-\psi_{\text {out }}\right)}{\rho}+\frac{\alpha \tan \left(\beta_{i n}-\psi_{\text {in }}\right) \tan \left(\beta_{\text {out }}-\psi_{\text {out }}\right)}{\rho}$,
$R_{44}=1-\alpha \tan \left(\beta_{\text {out }}-\psi_{\text {out }}\right)^{\rho}+\frac{L_{\text {in }}}{\rho}\left[-\tan \left(\beta_{\text {in }}-\psi_{\text {in }}\right)^{\rho}-\tan \left(\beta_{\text {out }}-\psi_{\text {out }}\right)\right]+$
$R_{44}=1-\alpha \tan \left(\beta_{\text {out }}-\psi_{\text {out }}\right)^{\rho}+\frac{L_{\text {in }}}{\rho}\left[-\tan \left(\beta_{\text {in }}-\psi_{\text {in }}\right)^{\rho}-\tan \left(\beta_{\text {out }}-\psi_{\text {out }}\right)\right]+$
$\frac{L_{\text {in }} \alpha}{\rho} \tan \left(\beta_{\text {in }}-\psi_{\text {in }}\right) \tan \left(\beta_{\text {out }}^{\rho}-\psi_{\text {out }}\right)$,
$\frac{L_{\text {in }} \alpha}{\rho} \tan \left(\beta_{\text {in }}-\psi_{\text {in }}\right) \tan \left(\beta_{\text {out }}^{\rho}-\psi_{\text {out }}\right)$,
$R_{51}=\sin \alpha+\tan \beta_{\text {in }}(1-\cos \alpha)$,
$R_{51}=\sin \alpha+\tan \beta_{\text {in }}(1-\cos \alpha)$,
$R_{52}=L_{\text {in }}\left[\sin \alpha+\tan \beta_{\text {in }}(1-\cos \alpha)\right]+\rho(1-\cos \alpha)$,
$R_{52}=L_{\text {in }}\left[\sin \alpha+\tan \beta_{\text {in }}(1-\cos \alpha)\right]+\rho(1-\cos \alpha)$,
$R_{55}=1$,
$R_{55}=1$,
$R_{56}=\frac{L_{i n}+L_{\text {gut }}+\rho \alpha}{\gamma^{2}}-\rho(\alpha-\sin \alpha)$,
$R_{56}=\frac{L_{i n}+L_{\text {gut }}+\rho \alpha}{\gamma^{2}}-\rho(\alpha-\sin \alpha)$,
$R_{66}=1$.

```
```

$R_{66}=1$.

```
```

Ref: S.Rimjaem, "Optimization of HEDA2 Spectrometer Using Matrix Transportation", PITZ Note, 24.04.2009

$$
\ell(s)=R_{51} x(0)+R_{52} x^{\prime}(0)+R_{55} \ell(0)+R_{56}\left(\Delta p / p_{0}\right)
$$

