Using HEDA2 as a Bunch Compressor

Motivation

- Transformation Matrices
- 2nd High Energy Dispersive Arm (HEDA2)
- ASTRA Simulations for the Input Beams
- Calculation of Bunch Compression by HEDA2
- Summary & Outlook

Results of velocity bunching experiment (shifts: 30-31.10.15)

Machine Parameters					
Laser pulse shape Gaussian					
Laser temporal length	~2.5 ps FWHM				
BSA	2.0, 2.5 mm				
Bunch charge	20,100,250 pC				
Peak power of RF in the gun	6.3 MW				
Peak power of RF in the booster	2.7 MW				
Gun phase*	0 degree				
Booster phase*	0 to -90 degree				

FWHM bunch length VS booster phase

Calculated form factors

Motivation

ΡΙΤΖ

$$\frac{dU_{CTR}}{d\omega} \propto \left|F_{long}(\omega)\right|^2$$

$$F_{long}(\omega) = \int_{-\infty}^{\infty} \rho_{long} \exp(-i\omega t) dt$$

Shorter bunch is needed for covering higher frequency

Selected long. bunch profiles

Can HEDA2 be used as a bunch compressor ?

Works in this presentation is trying to answer this question by using transformation matrices.

Ref: A.Chao Handbook, p.56-59, 1999 S.Rimjaem, HEDA2 note, 24.9.09 D.C.Carey, SLAC-R-530,

A charged particle is represented by a vector X(s)

$$\boldsymbol{X^t}(s) = \begin{bmatrix} \boldsymbol{x}(s) & \boldsymbol{x'}(s) & \boldsymbol{y}(s) & \boldsymbol{y'}(s) & \boldsymbol{\ell}(s) & \Delta p/p_0 \end{bmatrix}$$

The vector X(0) at position 0 is transform to another vector X(s) at position s by

 $\boldsymbol{X}(s) = \boldsymbol{\mathcal{M}}\boldsymbol{X}(0)$

where \mathcal{M} is a 6x6 matrix characterizing lattice(s) between 0 and *s*. It is so called "**transformation matrix**".

▶ By assuming Δp and p_0 are constant, x- and y-motions are decoupled and system have midplane symmetry about y = 0, $X(s) = \mathcal{M}X(0)$ can be expanded as

x(s)	R_{11}	R_{12}	0	0	0	R_{16}]	[x(0)]
x'(s)	R_{21}	<i>R</i> ₂₂	0	0	0	<i>R</i> ₂₆	x'(0)
y(s)	 0	0	R_{33}	R_{34}	0	0	y(0)
y'(s)	0	0	R_{43}	R_{44}	0	0	y'(0)
$\ell(s)$	R_{51}	R_{52}	0	0	R_{55}	R_{56}	$\ell(0)$
$\Delta p/p_0$	0	0	0	0	0	R_{66}	$\left\lfloor \Delta p/p_0 \right\rfloor$

PITZ Transformation Matrices (2)

The final vector of the electron can be written as

$$\begin{bmatrix} x(s) \\ x'(s) \\ y(s) \\ y'(s) \\ \ell(s) \\ \Delta p/p_0 \end{bmatrix} = \begin{bmatrix} R_{11}x(0) + R_{12}x'(0) + R_{16}(\Delta p/p_0) \\ R_{21}x(0) + R_{22}x'(0) + R_{26}(\Delta p/p_0) \\ R_{33}y(0) + R_{34}y'(0) \\ R_{43}y(0) + R_{44}y'(0) \\ R_{51}x(0) + R_{52}x'(0) + R_{55}\ell(0) + R_{56}(\Delta p/p_0) \\ R_{66}(\Delta p/p_0) \end{bmatrix}$$

Transformation matrix of a drift space with length of L

$$\boldsymbol{\mathcal{M}}_{\boldsymbol{D}}(L) = \begin{bmatrix} 1 & L & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & L & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & \frac{L}{\gamma^2} \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

PITZ Transformation Matrices (3)

Transformation matrix of a sector magnet

PITZ Transformation Matrices (4)

Pole face rotation (wedge angle) matrix

$$\boldsymbol{\mathcal{M}}_{\boldsymbol{\beta}} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ \frac{\tan \boldsymbol{\beta}}{\rho} & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & -\frac{\tan \boldsymbol{\beta}}{\rho} & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Transformation matrix of a sector magnet including wedge angles

$$\mathcal{M}_{SecD} = \mathcal{M}_{eta_{out}} \mathcal{M}_{RecD} \mathcal{M}_{eta_{in}}$$

PITZ HEDA2: Layout and Parameters

High2.Scr1

Specifications of Dipole Magnets in the Second High Energy Dispersive Arm (HEDA2)

Parameter	Dipole 1	Dipole 2	Dipole 3	
Type	sector	sector with exit wedge angle	sector	1
Bending angle, α (degree)	60	120	60	
Entrance wedge angle, β_{in} (degree)	0	0	0	
Exit wedge angle, β_{out} (degree)	0	9	0	
Bending radius, p (mm)	600	400	400	
Maximum magnetic field (T)	0.23	0.34	0.34	J
Effective length (mm)	628.3	837.8	418.9]
Pole gab (mm)	60	60	60	1
Vertical field homogeneity (dB/B)	±5×10 ⁻⁴	±5×10 ⁻⁴	$\pm 5 \times 10^{-4}$	1
Good field region in vertical	±25	±25	±25	1
direction (mm)				
Good field region in radial	±70	±50	±50)15 P
direction (mm)				

PITZ HEDA2: Tr. Matrices Used in This Work

$\boldsymbol{X_{final}} = \boldsymbol{\mathcal{M}_{SecD3}}\boldsymbol{\mathcal{M}_{D23}}\boldsymbol{\mathcal{M}_{SecD2}}\boldsymbol{\mathcal{M}_{D12}}\boldsymbol{\mathcal{M}_{SecD1}}\boldsymbol{X_{initial}}$

PITZ ASTRA Simulations for the Input Beams

Examples of Longitudinal Phase Space of the Output Beams with Imain = 330A

Input for ASTRA Simulation			
Zstart → Zstop	0 → 6 m		
# macroparticles	20k		
Laser pulse shape	Gaussian		
Laser temporal length	2.43 ps FWHM		
Bunch charge	100 pC		
Laser BSA size	2 mm		
Main solenoid current	(230:10:330) A		
Peak field in gun	60.5 MV/m		
Peak field in booster	17.2 MV/m		
Gun RF phase*	0 degree		
Booster RF phase*	(-90:30:90) degree		

*With respect to the Maximum Mean Momentum Gain (MMMG) phase

^{IT} Calculation of Bunch Compression by HEDA2 12

Energy-chirp with positive slope ($\Phi_{\text{booster}} = 30^\circ$), $I_{\text{main}} = 330 \text{ A}$

Energy-chirp with negative slope ($\Phi_{\text{booster}} = -90^\circ$), $I_{\text{main}} = 330 \text{ A}$

Summary Plot: bunch length VS booster phase

Summary Plot: bunch length VS main solenoid current

Bunch compression by HEDA2 was calculated by using transportation matrices.

Can we use HEDA2 as a bunch compressor?

- Yes, we can! Some results show the compression but...
- Beam size and booster phase should be optimized further.
- Correction of the calculation script still has to be checked.

Check correction of the calculation script:

- Different transformation matrices for HEDA2
- Check with the Zeuthen Chicane
- Find the optimum transverse beam size and booster phase (investigation of the parameter space).
- More macro-particles for the initial beams
- HEDA2 transport simulations with ASTRA and CSRTrack
- S2E simulation, CTR Calculations
- Play with other bunch charges

BACKUP

Ref: Eun-San Kim, ILC Accelerator School lecture, May 20 2006

A simple case of 4-bending magnet chicane

• Zeuthen Chicane : a benchmark layout used for CSR calculation comparisons at 2002 ICFA beam dynamics workshop

- Bend magnet length : L_B = 0.5m
- Drift length B1-B2 and B3-B4(projected) : △L = 5m
- Drift length B2-B3 : $\Delta L_c = 1m$
- Bend radius : $\rho = 10.3$ m
- Effective total chicane length ($L_T-\Delta L_c$) = 12m
- Bending angle : $\theta_0 = 2.77 \text{ deg}$
- Momentum compaction : R₅₆ = -25 mm
- 2nd order momentum compaction : T₅₆₆ = 38 mm Initia
- Total projected length of chicane : L_T = 13 m

Bunch charge : q = 1nC Electron energy : E = 5 GeV

- Initial bunch length : 0.2 mm
- Final bunch length : 0.02 mm

1.3 Matrix Transportation for Dipole Magnet and Drift Spaces

Matrix transportation for the particle travels through the dipole magnet from the initial position (S_i) to the final position (S_f) as shown in Fig. 1 can be written as

$$M = M_{Lout} M_D M_{Lin}, \tag{14}$$

where $M_{L_{in}}$ and $M_{L_{out}}$ are the transport matrices for the drift spaces before and after the dipole magnet. The non-zero matrix elements in Eq. (14) are

$$\begin{split} R_{11} &= \cos \alpha [1 + \frac{L_{out}}{\rho} (\tan \beta_{in} + \tan \beta_{out})] + \sin \alpha [\tan \beta_{in} + \frac{L_{out}}{\rho} (\tan \beta_{in} \tan \beta_{out} - 1)], \\ R_{12} &= L_{in} \tan \beta_{in} [1 + \frac{L_{out} \tan \beta_{out}}{\rho}] + \cos \alpha [L_{in} + L_{out} + \frac{L_{in}L_{out}}{\rho} (\tan \beta_{in} + \tan \beta_{out})] + \\ & \sin [\alpha + L_{out} (\tan \beta_{out} - \frac{L_{in}}{\rho})], \\ R_{16} &= \rho (1 - \cos \alpha) + L_{out} [\sin \alpha + \tan \beta_{out} (1 - \cos \alpha)], \\ R_{21} &= \frac{\cos \alpha}{\rho} (\tan \beta_{in} + \tan \beta_{out}) + \frac{\sin \alpha}{\rho} (\tan \beta_{in} \tan \beta_{out} - 1), \\ R_{22} &= \cos \alpha [1 + \frac{L_{in}}{\rho} (\tan \beta_{in} + \tan \beta_{out})] + \sin \alpha [\tan \beta_{out} (1 + \frac{L_{in} \tan \beta_{in}}{\rho}) - \frac{L_{in}}{\rho}], \\ R_{26} &= \sin \alpha + \tan \beta_{out} (1 - \cos \alpha), \\ R_{33} &= 1 - \alpha \tan (\beta_{in} - \psi_{in}) + \frac{L_{out}}{\rho} [-\tan (\beta_{in} - \psi_{in}) - \tan (\beta_{out} - \psi_{out})] + \\ \frac{L_{out}\alpha}{\rho} \tan (\beta_{in} - \psi_{in}) \tan (\beta_{out} - \psi_{out}), \\ R_{34} &= L_{in} + L_{out} + \rho [\alpha - L_{in} \tan (\beta_{in} - \psi_{in}) - L_{out} \tan (\beta_{out} - \psi_{out})] + \frac{L_{in}L_{out}}{\rho} (15) \\ & [-\tan (\beta_{in} - \psi_{in}) + \tan (\beta_{out} - \psi_{out}) + \alpha L_{out} \tan (\beta_{in} - \psi_{in}) \tan (\beta_{out} - \psi_{out})], \\ R_{43} &= -\frac{\tan (\beta_{in} - \psi_{in})}{\rho} - \frac{\tan (\beta_{out} - \psi_{out})}{\rho} + \frac{\alpha \tan (\beta_{in} - \psi_{in})}{\rho} - \tan (\beta_{out} - \psi_{out})], \\ R_{44} &= 1 - \alpha \tan (\beta_{out} - \psi_{out}) + \frac{L_{in}}{\rho} [-\tan (\beta_{in} - \psi_{in}) - \tan (\beta_{out} - \psi_{out})] + \\ & \frac{L_{in}\alpha}{2} \tan (\beta_{in} - \psi_{in}) \tan (\beta_{out} - \psi_{out}), \\ R_{51} &= \sin \alpha + \tan \beta_{in} (1 - \cos \alpha), \\ R_{52} &= L_{in} [\sin \alpha + \tan \beta_{in} (1 - \cos \alpha)] + \rho (1 - \cos \alpha), \\ R_{56} &= 1, \\ R_{66} &= 1. \end{aligned}$$

$\ell(s) = R_{51}x(0) + R_{52}x'(0) + R_{55}\ell(0) + R_{56}(\Delta p/p_0)$

Using HEDA2 as a Bunch Compressor | Prach Boonpornprasert | PITZ Physics Seminar | 24.03.2015 | Page 22

Ref: S.Rimjaem, "Optimization of HEDA2 Spectrometer Using Matrix Transportation", PITZ Note, 24.04.2009