Report on electron windows

For PITZ plasma cell

Osip Lishilin PITZ Physics seminar Zeuthen, 2016-02-18

Plasma cell design

Osip Lishilin | Report on electron windows for the plasma cell | 2016-02-18 | Page 2

Maximal agreeable scattering angle: 0.2 mrad

Multiple scattering

- a particle undergoes a number of scatterings per each step, resulting a small deviation from initial trajectory
- Valid only if number of elementary scatterings per step is large enough

Single scattering

- based on the Rutherford formula
- Every interaction is a separate step ->demands much more CPU time compared to multiple scattering

"FLUKA: a multi-particle transport code" A. Ferrari, P.R. Sala, A. Fasso`, and J. Ranft, CERN-2005-10 (2005), INFN/TC_05/11, SLAC-R-773

Experiments at PITZ beamline

- 2014.02.07N Kapton 50 µm + (?) Gold 5 nm
- 2014.05.15A Mylar 6 µm + Gold coating of unknown thickness
- = 2015.03.07M Mylar 2 μm
- 2015.10.22M PET (Mylar) 0.9 μm + 37.5 nm Al coating both sides

FLUKA: multiple scattering

Osip Lishilin | Report on electron windows for the plasma cell | 2016-02-18 | Page 6

FLUKA: forced single scattering

Scattering on aluminium

*for the last point (0.9 μ m) a coated foil is simulated

| 2016-02-18 | **Page 8**

Experimental data by D. Richter

foil	$K/(m^2 s^{-1})$	gas	\dot{Q} into PITZ/(mbar l/s)
M, $2 \mu m$	$9.88 \cdot 10^{-9}$	Не	$3 \cdot 10^{-5}$
M, 6 μm , gold coated	$5.77 \cdot 10^{-9}$	Не	$5 \cdot 10^{-6}$
K, $25 \ \mu m$	$1.97 \cdot 10^{-13}$	Не	$4 \cdot 10^{-11}$
K, 8 μm	$9.85 \cdot 10^{-15}$	Ar	$4 \cdot 10^{-12}$
P, 0.9 μm , aluminum coated 2 × 27.5 nm	$2.58 \cdot 10^{-14}$	Ar	$1 \cdot 10^{-10}$

- Maximum acceptable gas load is 1.10⁻⁶ mbar l s⁻¹
- Double sided coating decreases gas permeation without introducing to much scattering

Polymer foils: mechanical properties

Film Type	Polyimide Kapton®	Polyester Mylar®	Polyester PEN
Glass Transition, Tg,	410	75	120
°C			
Continuous Operating	240	105	180
Temperature, °C			
Tensile Strength,	33	30	40
@25°C, Kpsi			
Modulus, Kpsi	430	550	850
Elongation, %	70	130	70
Heat Shrinkage, %	0.1	4	1
(200°C, 30 Min.)			
Moisture Absorption,	2.8	0.5	0.4
%		' .	
Radiation	28.58	28.54	29.49 cm
length, cm			(calculated)
Chemical formula	(C ₂₂ H ₁₀ N ₂ O ₅) _n	(C ₁₀ H ₈ O ₄) _n	(C ₁₄ H ₁₀ O ₄) _n

Polymer foils: chemical composition

Polymer foils: scattering

Polymer films and coating materials: scattering

Scattering angle, mrad

- > 0.9 µm PET + 2x37.5 nm AI is a primary candidate for the electron windows for the plasma cell and the gas discharge cell
 - Dummy plasma cell is in preparation
- > 1,5 A4 sheets of the foil are available should be enough for the experiments
- If this foil fails the dummy plasma cell tests, PEN foil is the next option

Beam parameters for simulation

Theory: Multiple Coulomb Scattering

From: Claus Grupen "Teilchendetektoren": Multiple Coulomb Scattering

The rms of the projected scattering angle distribution:

$$\theta_{rms} = \frac{13.6MeV}{\beta pc} z \sqrt{\frac{x}{X_0}} \left[1 + 0.038 \ln\left(\frac{x}{X_0}\right) \right]$$

$$\beta pc = 22MeV; \ z = 1; \ X_0 = 0.28m$$

- Important: Radiation length X₀
 - Gold: 0.3 cm
 - Aluminium: 8.9 cm
 - Kapton (Polyimide): 28.6 cm
 - Mylar (PET): 28.5 cm
 - Teonex (PEN): 29.5 cm
 - Beryllium: 35.3 cm
 - Polyethylene: 50.3 cm

Bonus: new plasma cell

PITZ Photo Injector Test Facility

A test heat pipe with channels instead of the metal mesh is in preparation

The new plasma cell design with flat arms is being finalized

