First Slice Emittance Measurements using the PITZ TDS

Introduction

- Measurement Procedure
 - acquisition, analysis, tools
- First Results and simulations

> Outlook

Holger Huck 04.02.2016, PITZ Physics Seminar

"Normalized transverse rms emittance" defined by statistical moments of the electron distribution:

$$\varepsilon_{n,x} = \beta \gamma \sqrt{\langle x^2 \rangle \langle x'^2 \rangle - \langle xx' \rangle^2}$$

- "Projected emittance": <x²>,<x²>,<xx'> are integrals over the whole e-bunch
- Slice emittance": Emittance as function of the longitudinal position in the bunch; <x...> evaluated for discrete z-intervals.

For XFELs, slice emittance is more important than projected emittance, because low charge / high emittance tails do not contribute to lasing!

> Idea:

- Backtracking the measured beam size <x²> through a known beam transport matrix.
- Measure $\langle x^2 \rangle$ for different matrices but the same starting distribution x_0, x'_0 , then fit a parabola.
- Seneral approach (linear matrix optics): $x = R_{11}x_0 + R_{12}x'_0$

 $\langle x^2 \rangle = R_{11}^2 \langle x_0^2 \rangle + 2R_{11}R_{12} \langle x_0 x_0' \rangle + R_{12}^2 \langle x_0'^2 \rangle$

- With at least 3 measurements, the unknown moments of the starting distribution can be obtained by a parabola surface fit (e.g. "poly22" fittype in Matlab)
- Emittance at the <u>starting position</u> follows from standard formula on p.2

$$\langle x^2 \rangle = \langle x_0^2 \rangle (1 - l \cdot l_{eff} \cdot k)^2 + + 2 \langle x_0 x_0' \rangle (1 - l \cdot l_{eff} \cdot k) (l + l_{eff}) + \langle x_0'^2 \rangle (l + l_{eff})^2$$

PITZ Setup

Slice Emittance Measurement

- Image acquisition for various quad settings (TDS_main.m)
- 2. Extracting all <x²> data (SLEM.m)
- 3. Fitting, plotting, exporting and comparison with ASTRA distributions (SLEM2.m)

1. Image acquisition

- Just use the same tool as for bunch length measurements! (TDS_main.m)
- All acquired images (~50-200) are automatically saved in one *.mat file, together with calibration, bunch length, etc.
- > Quad settings are currently not saved, will be added soon...

1. Image acquisition

Planned updates (until May/June...)

- Automatically save machine parameters like quad settings
- SuperGauss fit for FWHM analysis
- Streamline GUI
- Save ROI-sized images only (not full size)
- > Add streak direction indicator ("time arrow", but this must be once set by operator)
- Screen sensitivity maps for normalization
 - Similar to QE map acquisition, but much faster (10 images per second and steerers don't need few seconds for each step)
 - Current profiles already have some of this information, but very rough and not 2-dimensional...

2a. Writing a definition file

SLEM.m needs to know which files to analyze and which quad settings belongs to which file

Datei	Bearbeiten	Format A	nsicht ?	
%SLEM %\dooc %p[MeV 21.6 21.6 21.6 21.6 21.6 21.6 21.6 21.6	Measurem (/c] 4.76 4.76 4.76 4.76 4.76 4.76 4.76 4.76	ents (10 e\LongPh I_Q9[A -5.2 -5.3 -5.4 -5.5 -5.6 -5.7 -5.8 -5.9 -6.0 -6 1	0 pC, BSA08, Imain3 Sp\2015\TDScalib\TD] I_Q10[A] calib_0922.mat calib_0939.mat calib_0945.mat calib_0952.mat calib_1000.mat calib_1009.mat calib_1030.mat calib_1035.mat calib_1040.mat calib_1044.mat	856) in 05scan2015\20150823M\ *.matfile
21.6 21.6	4.76	-6.2 -6.3	calib_1050.mat calib_1054.mat	J slem_def.txt - Editor Datei Bearbeiten Format %%% SLEM Measuremen %%% first some cons

> Outlook: enhanced table including all quads, screen and solenoid...

slem_def.txt - Editor				
Datei Bearbeiten Forr	nat Ansic	ht ?		
%%% SLEM Measurem %%% first some co %%% then table wi	ents ten nstants, th 14 co	nplate starting wit olumns: matfil	ith one "%" ile screen# I_main[A] I_high.q10[A] I_q9	Q1[A]
%pathname = Q:\gr %momentum = 21.6	oup\pitz %	\do <mark>ocs\measur</mark> 6 MeV∕c	re\LongPhSp\2015\TDScalib\TDSscan2015\20150	0823M∖
%charge = 100 %BSA = 0.8 %VC2path = Q:\gro %VC2file = BSA0.8	9 9 µp\pitz\ _6H49.in	6 pC, just for 6 mm, just for doocs\measure nc % just	or reference or reference `e\Laser\TransverseProfile\VC2\2015\20150822 st for reference	!N\
calib_0922.mat 1 calib_0939.mat 1 calib_0945.mat 1 calib_0952.mat 1 calib_1000.mat 1 calib_1009.mat 1 calib_1030.mat 1 calib_1035.mat 1 calib_1040.mat 1 calib_1044.mat 1 calib_1050.mat 1 calib_1054.mat 1	350 - 350 - 350 - 350 - 350 - 350 - 350 - 350 - 350 - 350 - 350 - 350 - 350 - 350 - 350 - 350 - 350 -	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	

2. SLEM.m

Purpose of SLEM.m:

- Extracting all <x²> slice data from all images
- Input up to ~1 GB, output just a few MB
- Takes about 15 minutes for 150 MB of images
- Two different methods to determine <x²>: Gauss fit and rms
- Automatic and interactive masking of slices and frames
- Variable slice width for rms-method:

For each vertical line *y*, calculate and save variance V_y , center of mass E_y and sum of pixels P_y (line charge). The slice variance $\langle x^2 \rangle$ can then be calculated for slice range Y=[y1:y2] by

$$\langle x^2 \rangle = \frac{\sum_Y P_y \left(V_y + E_y^2 \right)}{\sum_Y P_y} - \left(\frac{\sum_Y P_y E_y}{\sum_Y P_y} \right)^2$$

2. SLEM.m

(a)

Number of slices for Gau	uss fit method:
17	
Slice range (in units of o	ne FWHM):
1.8	
Automatically skip all x_r	rms values above (mm

> Automatic evaluation of all images

Takes ~15 min for 12240 Gauss fits (60 frames x12 files x17 slices)

(C)

- Manual review of the slice analysis
- Option to mask individual frames or slices

2. SLEM.m

3. SLEM2.m

ASTRA with SLEM2.m

- > 100 pC, 0.8 mm laser spot size
- E-XFEL startup conditions
 - (53 MV/m)
 - long Gaussian laser pulses
- Simple optics, similar to emittance measurements
 - Solenoid focus at ~6 m from cathode.
 - Quads just before TDS (11 m) focus onto screen at 12 m.

- Bunch length ~11 ps
- Resolution ~0.5 1.0 ps FWHM, depending on quad settings
- Reasonable number of longitudinal slices ~10 20

First SLEM measurement: results

ASTRA: SLEM vs. Solenoid current

100 pC, 53 MV/m, 9 ps Gauss, Core + Halo, Q9=-5 A, Bunch length ~10.5 ps, evaluated 7 cm before Q10

ASTRA: SLEM vs. Screen position

PITZ Photo Injector Test Facility az

100 pC, 53 MV/m, 9 ps Gauss, Core + Halo, Q9=+5.8 A, Bunch length ~10.5 ps, evaluated 7 cm before Q10 I_main = 365 A Additional screens: High1.scr1&4, PST.scr1

- Small increase (~15%) from booster to Q10
- Large jump (60%) on the last 2 meters to PST.Scr1 due to strong quad focusing

ASTRA: SLEM vs. Q9 and transverse laser profile

100 pC, 53 MV/m, 9 ps Gauss, Bunch length ~10.5 ps, evaluated 7 cm before Q10

- > Q9 setting hardly matters
- Core + Halo profile increases SLEM by ~15%

First SLEM measurement: adding errorbars

- Obtained by standard error propagation law
- From the 95% confidence bounds of the three fit paramters (divided by 4)
- Probable issue: errors of the fit paramters are not independent!

Source of the huge errobars?

- Almost perfect xx' correlation!
- Natural behaviour of a parallel beam that just passed a quadrupole
- ...so we probably just need to choose a different reconstruction point (i.e. before Q9)

First SLEM measurement: rms method

Quadrupole calibration

- Calibration curves from *Danfysik* were NOT done with degaussed magnets!
- Solution: during shifts we should always start from maximum current (or use Yves' tool)
- However, for SLEM reconstruction at least the constant offset doesn't matter much

- Qualitatively, the first rough slice emittance measurements show similar trend and order of magnitude than ASTRA simulations.
- > But actual numbers are 2-3 times too large, not explainable by generous variations of solenoid current.
- "Rms method" needs more work.
- > Different reconstruction point should be chosen.
- Outlook: choose arbitrary quad or screen from a list for reconstruction in SLEM2.m (work in progress...)

Outlook: Simulation of Measurements (=>Chaipattana)

- Do a full simulation of the measurement, i.e. ASTRA tracking of the e-bunch through the quadrupoles and the TDS field until the screen, then apply the same analysis as for the experimental images on PST.scr1.
- Start with the simulations presented here (for various solenoid currents) and just add the TDS field! (from D. Malyutin's simulations)
- Then we have three SLEM curves to compare: Experiment, Simulation and Simulation of experiment.
- > After that, perform simulations and simulations of measurements for
 - Various bunch charges (at least for 1 nC, 500 pC, 100 pC)
 - Various quad settings
 - Various observation screens

(*) in terms of temporal resolution and accuracy

The goal is to define reasonable parameter ranges for the actual measurements, especially the best(*) transport matrix (quad settings, screen selection)...

...and to estimate the systematic measurement errors from space charge, dispersion and TDS field!

