Accelerator R&D at PITZ in 2016, 2017, ff

Frank Stephan for the PITZ team

Content – main activities:

- testing the 2 RF window solution with full XFEL specs
- beam characterization + 3D ellipsoidal laser pulses: ultimate electron beam quality
- Gun5: the next generation of RF gun
- plasma acceleration experiments at PITZ
- tests towards CW RF guns

Remarks:

- 1) Scientific exchange with the corresponding people from MPY, XFEL and FLASH is by default planned for each of the research topics and therefore not additionally mentioned in the following slides.
- 2) Challenges for technical groups from previous slides are not repeated on subsequent slides.

Testing the 2 RF window solution with full XFEL specs

- > Scientific challenges, status, highlights:
 - PITZ has shown in 2015 that 2 Thales RF windows can work reliably up to XFEL specs

 After conditioning time: no problem from Thales RF windows could be found
 - BUT: Gun4.2 (9 years old) could NOT reliably support XFEL specs. Therefore, run at XFEL specs was only 3 month with many interlocks from the gun, afterwards run at 5MW, 650µs, 10Hz was quite stable
- > Current time planning:
 - Gun4.6 (new, "watchband reloaded" cathode design) now being installed at PITZ is equipped with 2 DESY RF windows → expected to run at XFEL specs during 2016
 - (If run is not stable due to RF windows \rightarrow try with 2 Thales type windows \rightarrow 2016 2017)
 - (If run not stable due to gun \rightarrow try with Gun4.5 \rightarrow end2016 2017)
 - If Gun4.6 runs reliably with 2 DESY RF windows (as expected) → test of Gun4.5 with 1 Thales window is possible in 2017
- > Challenges for technical groups in M division:
 - MHF-sl: if needed: further dry-ice cleaning of components
 - MHF-p: if needed: RF simulations, further improvement of gun modulator (PITZ, XFEL)
 - MSK: latest installation of IIrf hard- and software, further development of IIrf regulation
 - MCS: joined development of unified, quick and safe start-up procedures

beam characterization + 3D ellipsoidal laser pulses: ultimate electron beam quality

- > Scientific challenges, status, highlights:
 - Detailed electron beam characterization, incl. using TDS structure (projected, slice + thermal emittance, bunch length, long. phase space, origin of µ-bunching instability) using different operation parameters (cathode gradient, laser pulse shapes, bunch charges, photo cathodes) → e.g. measurement matrix: emittance (laser shape, gradient)
 - Further development of laser pulse shaping towards generating 3D ellipsoidal laser pulses → close collaboration between FS-LA, IAP Nizhny Novgorod, PITZ → ultimate beam quality → should allow XFEL performance beyond current specs
- > Current time planning:
 - 2016: fully commission TDS system, start detailed beam characterization, first synchronized photoelectrons from IAP laser system
 - 2017 ff: continue detailed beam characterization, continuous upgrade and improvement of IAP laser system with corresponding beam characterizations to develop a laser system suitable for installation at an user facility
- > Challenges for technical groups in M division:
 - MIN, MSK: know-how exchange / if needed support to fully commission TDS system
 - MSK: support installation of synchronization system for IAP laser
 - FS-LA: 2016: help to repair OSS and to install laser diagnostics at MBI laser \rightarrow stability

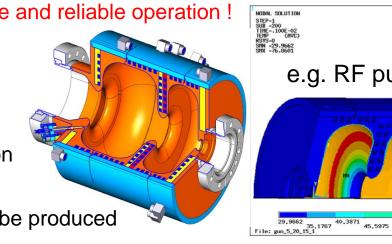
Gun5: the next generation of RF gun

- > Scientific challenges, status, highlights:
 - **Gun5** has **RF pickups** \rightarrow should allow improved RF regulation, new RF feed technology
 - improved **cell/iris shape** \rightarrow better RF efficiency, reduced DC in the cavity
 - improved water cooling \rightarrow better heat removal \rightarrow allows higher duty cycle

(e.g. 25 Hz at XFEL, 800 µs at FLASH)

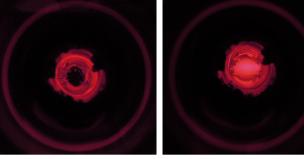
e.g. RF pulse heating

NODAL SOLUTION


 \rightarrow Gun5 should allow more stable and reliable operation !

- > Current time planning:
 - spring 2016: physics design of producible cavity ready
 - rest of 2016: produce construction drawings, start test production
 - until autumn 2017: Gun5 should be produced
 - end 2017 / start 2018: start gun conditioning and test of improved RF regulation at PITZ
- > Challenges for technical groups in M division:
 - MVS: give feedback on production technology, from late 2016 on start test production and later on final production of Gun5 (in cooperation with Hansa Press ?!)
 - MSK: from late 2017 on strong support on and test of LLRF regulation on gun pickup

56,0184 61.2288 66,4393 71.6497 76,8601



Plasma acceleration experiments at PITZ

Laser off (heat glowing)

> Laser on (plasma)

- > Scientific challenges, status, highlights:
 - Several pre-experiments: beam focusing, scattering by thin window foils, gas density measurements
 - First plasma in cross-shaped plasma cell worldwide, BUT no Self Modulation Instability (SMI) observed yet !
 (SMI – needed for AWAKE experiment at CERN: p bunch → e bunch)

- Reasons understood: too low plasma density (coarse mesh, poor ArF laser transport), too low beam density (thick windows, long. laser shape) → all problems solvable ! (8k€)
- > Current time planning:
 - spring/summer 2016: repeat self modulations experiments with improved setup
 - summer/autumn 2016: first experiments on generating high transformer ratios (efficient acceleration with beam driven PWFA)
 - 2017+: first experiments on lab astro physics if PITZ proves to be suitable in simulations
- > Challenges for technical groups in M division:
 - MVS: until late 2016 provide one special Mo cathode to test DC production needed for lab astro physics experiments

tests towards CW RF guns for XFEL / FLASH Not yet decided if such a development

will take place

Emission, therm. emittance, beam quality @ reduc. grad.	Test cathodes emitting at green wavelength	Development and Test of a 216 MHz NC CW RF gun
Scientific challenges, status, highlights:		follows baseline solution for
 Independent from the final type max. emission gradient for any CW gun (NC or SC) is expected to be lower than for current PITZ gun 	 of CW gun (NC or SC): can significantly reduce the requirements on the photo cathode laser system (power, damage, shaping) 	 LCLSII based on APEX design from Berkeley (186 MHz) changed frequency to fit DESY synchronization
 Current time planning: 2017ff: study emission, thermal emittance, optimal achievable beam quality at CW gradients with PITZ gun and different laser shapes (incl. flat-top, 3D ellips.) 	 maybe 2016+: production of "green cathodes" at LASA ? maybe 2017+ tests @PITZ: DC, emission and thermal emittance at CW gradients 	 2017f: start preparatory work design, built and condition RF gup and its RE system
> Challenges for technical groups in M division:		
 MPY, FS-LA: close exchange on experiment planning and results 	 MVS: if interested and time allows join the development FS-LA: close exchange on experiment planning and results 	<u> </u>

