### **Emittance Measurement**

## **Preparations**

- Option: Adjust BSA size
- If BSA was changed: BBA
- Option: update steerer settings
- Create folder in \Measure\TransvPhSp\"year"\"emittance folder": yyyymmddS with S=N,M
  or A or start fastscan3 to create folder automatically
- Create excel file for solenoid scan and statistics (copy from older folder)

#### **Laser conditions**

- Document laser transverse profile at VC2
  - Adjust laser to 1 pulse and LT <50%</li>
  - o Connect Video Client to VC2 (if needed: turn camera on)
  - o Push in mirror VC2
  - o Open shutter, adjust LT to have no saturation
  - Menu: "Image", then "Background" → Grab and Save e.g. 10 frames (\Measure\Laser\TransverseProfile\VC2\"year"\ "emittance folder": yyyymmddS with S=N,M or A)
  - Load Background (Menu), load Image (Menu)
  - Print VC2 pictures to logbook
    - 1. Circular area of interest, add information: xRMS; yRMS
    - 2. X-cut
    - 3. Y-cut
  - o Close shutter
  - o Pull out mirror VC2
  - Document laser longitudinal profile with OSS
    - Start LabView script on Streak Camera Control computer (Measure with OSS HiRes use this.vi) run measurement
    - Switch on OSS
    - o Increase laser to 600 pulses, simultaneously press 'save to file' in LabView
    - Create folder in \Measure\Laser\OSS\"year": yyyymmddS with S=N,M or A
    - Save file as hhmm.oss (hours, minutes)
    - Open MatLab on Streak Camera Control computer, choose Fit Program for flat top or Gauss, run program
    - Fit OSS measurement, print to PITZ log book ("cold OSS")
    - Wait a few minutes, repeat measurement and fit, print to logbook ("warm OSS")
    - Close LabView and Matlab
    - Decrease laser to 1 pulse, switch off OSS

# **Charge/Momentum**

- Option: Phase scan
- Option: Adjust Gun phase to have strong electron beam
- Put solenoid to high current to collect charge (e.g. 425A for Faraday cups; 350A for High1.ICT1))

- Start MatLab script for charge measurement standard: High1.ICT1 (for Q<500pC use Low. FC1)
- Adjust LT until charge needed for measurement is reached
- Measure charge; print to logbook
- Remove Low.FC1/2 from beam pipe if it was used
- Measure momentum after gun with LEDA
  - o Disp1.Scr1: YAG
  - Connect Video Client to Disp1.Scr1 (Bin2x2)
  - Adjust Low.Dipole current, solenoid+bucking current and number of laser pulses to see gun phase sweep around maximum on screen (typical numbers for 1nC, gun at full power: Low.Dipole -1.75A, solenoid 480A, 3 pulses)
    - 1. If needed adjust steerer magnets (Low.ST2 or Low.ST1)
  - Run OMA script (open MatLab, go to /doocs/measure/scripts/MatlabScripts/OMA/OMA and type "oma" or type "otetool oma") – (statistics: typical 20 or 30)
  - Print momentum scan and statistics for momentum distribution at MMMG phase to logbook
  - For off-crest measurement: Also print statistics for momentum distribution at offcrest phase to logbook
- Re-measure charge at MMMG gun phase (or off-crest phase if that is the one used for measurement), optionally adjust LT until charge needed for measurement is reached
- Remove Low.FC1/2 from beam pipe if it was used
- Option: If adjustment is big re-measure momentum and charge
- Degauss dipole
- Measure momentum after booster with HEDA1 (only if booster is on)
  - o Connect Video Client to High1.Scr5
  - Steering: place beam in center of High1.Scr5; most important: vertical (reference screen for Disp2.Scr1) – lens f100 to see the whole screen
  - Focus the beam at High1.Scr5 using High1.Q6 (closest quad to HEDA1 dipole) to minimize the vertical beam size (use bigger magnification lens and full frame to be more precise) – keep beam position unchanged
  - Make screenshot in the logbook where the vertical RMS beam size can be seen clearly (for small sizes use bigger magnification lens)
  - o Disp2.Scr1: YAG and lens f120 (zoom)
  - Connect Video Client to Disp2.Scr1 (Bin2x2)
  - Adjust High1.Dipole current, solenoid+bucking current and number of laser pulses to see gun phase sweep around maximum on screen (typical numbers for 1nC, gun+booster at full power: High1.Dipole -91A, solenoid 390A, 1 pulse)
  - Run OMA script (statistics: typical 10 or 20)
  - Print momentum scan and statistics for momentum distribution at MMMG phase to logbook
- Option: Re-check charge at High1.ICT1
- Degauss High1.Q1
- Degauss dipole

### **Emittance measurement with EMSY1**

- EMSY2: High1.Scr1 → High1.Scr3; High1.Scr4 → High1.Scr5
- Open shell in LINUX, type: "fastscan3" if not already running
- Option: Open shell in LINUX, type: "emcalc3"
- In fastscan3: Click 'Options...'
- Fill must file: click 'Open...'
- Print Program report (Musthaves) to logbook
- Adjust 'Video server' to High1.Scr1
- Beam size measurement at EMSY1 (High1.Scr1) vs. solenoid current
  - Connect Video Client to High1.Scr1 (Bin 2x2)
  - o High1.Scr1: YAG and lens f160 (or f250)
  - Option: Adjust High1.St1 to center the beam on High1.Scr1
  - Scan solenoid+bucking current to find range around beam minimum. Range for emittance measurement e.g. I<sub>min</sub> to I<sub>min</sub>+8A (or compare to earlier measurements)
  - o Adjust table in excel file to solenoid scan range
  - Set solenoid+bucking current to maximum value of range
  - Measure beam size
    - 1. Adjust camera gain and number of pulses to be close to saturation (minimize number of pulses to reduce jitter)
    - 2. Click 'Scan...' then 'Fast scan, EMSY and MOI' then 'EMSY'
    - 3. Click 'Plot EMSY and create beam.log'
    - 4. Print EMSY spot to logbook
    - 5. Fill in EMSY Xrms and Yrms, NoP and gain in Excel Table
    - 6. Set solenoid+bucking current to next value of range, go to point 1.
  - Option: Manual calculation of beam size
    - 1. In emcalc3: Click 'Calculate...', go to folder with measured beam size (EMSY1.imc), start e.g. with highest solenoid current
    - 2. Click 'Open' or double click
    - 3. Click 'Process EMSY spot only'
    - 4. Fill Xrms and Yrms into excel file
    - 5. Print EMSY spot to logbook
    - 6. Go to point 1
  - Option: print beam size summary to log book
  - Remove High1.Scr1
  - o Connect Video Client to High1.Scr4 (Hint: open second AVINE video client)
  - High1.Scr4: YAG and lens f160 (or f250)
  - o In fastscan3: Click 'Options...'
  - Adjust Video server to High1.Scr4
  - Set solenoid+bucking current to maximum value of range
  - Grab Mask Of Interest (MOI)
    - 1. Adjust camera gain and number of pulses to be close to saturation (minimize number of pulses to reduce jitter)
    - 2. Click 'Scan...' then 'Fast scan, EMSY and MOI' then 'MOI'
    - 3. Fill MOI Gain and NoP into excel file
    - 4. Set solenoid+bucking current to next value of range, go to point 1.

- High1.Scr1: set to X single slit (10μm for projected emittance, 50μm for thermal emittance)
- Option: scan of alpha angle
  - Set slit position to center of beam, adjust #pulses and camera gain
  - In fastscan3: Click 'Tools' then 'Tune angle orientation'
  - Accept new value if ok
  - Print graph to logbook
- Set solenoid+bucking current to maximum value of range
- X emittance measurement
  - 1. Set slit position to center of beam
  - 2. Adjust camera gain and number of pulses to be close to saturation (minimize number of pulses to reduce jitter)
  - 3. Find range for scan: Move slit in plus and minus direction until it disappears
  - 4. Adjust 'EMSY device' to EMSY1X
  - 5. In fastscan3/Options: Fill in range in 'Scan from' and 'Scan to'
  - 6. Option: adjust actuator speed to have about 100 to 200 frames
  - 7. Click 'Scan...' then 'Fast scan, EMSY and MOI' then 'Fast Scan'
  - 8. If saturation level is not correct, abort measurement and go to point 2.
  - 9. Fill EMSY\_X Gain and NoP into excel file
  - 10. Click: 'Emittance calculation', then 'Save measured data'
  - 11. Print statistics windows (Saturation along scan, Saturation inside of MOI, Sum) to logbook
  - 12. Print phase scan results window to logbook: left click on phase space picture, then 'shift + left click' (red frame of picture will blink)
  - 13. Fill EmitX 2D and EmitX 2D, nonscaled into excel file
  - 14. Set solenoid+bucking current to next value of range, go to point 1.
- High1.Scr1: set to Y single slit (10μm for projected emittance, 50μm for thermal emittance)
- Option: scan of beta angle
  - Set slit position to center of beam, adjust #pulses and camera gain
  - In fastscan3: Click 'Tools' then 'Tune angle orientation'
  - · Accept new value if ok
  - Print graph to logbook
- Set solenoid+bucking current to maximum value of range
- Y emittance measurement
  - 1. Set slit position to center of beam
  - 2. Adjust camera gain and number of pulses to be close to saturation (minimize number of pulses to reduce jitter)
  - 3. Find range for scan: Move slit in plus and minus direction until it disappears
  - 4. Adjust 'EMSY device' to EMSY1Y
  - 5. In fastscan3/Options: Fill in range in 'Scan from' and 'Scan to'
  - 6. Option: adjust actuator speed to have about 100 to 200 frames
  - 7. Click 'Scan...' then 'Fast scan, EMSY and MOI' then 'Fast Scan'
  - 8. If saturation level is not correct, abort measurement and go to point 2.
  - 9. Fill EMSY Y Gain and NoP into excel file
  - 10. Click: 'Emittance calculation', then 'Save measured data'

- 11. Print statistics windows (Saturation along scan, Saturation inside of MOI, Sum) to logbook
- 12. Print phase scan results window to logbook
- 13. Fill EmitY\_2D and EmitY\_2D, nonscaled into excel file
- 14. Set solenoid+bucking current to next value of range, go to point 1.
- o Print excel table+graph to logbook (solenoid scan)
- o Statistics: set solenoid+bucking current to minimum emittance value
- Add 'Stat1' to folder name in fastscan3
  - measure EMSY and MOI (Option: use EMSY and MOI from solenoid scan and use original folder)
  - Repeat X and Y emittance measurement several times (usual: 3)
- o Add 'Stat2' to folder name in fastscan3, measure emittance
- o Add 'Stat3' to folder name in fastscan3, measure emittance
- Print excel table+graph to logbook (statistics)