Beam dynamics study of RF and solenoid fields for PITZ gun without space charge (update)

- Introduction
- Magnification factor analysis with grid image
- Rotation angle analysis
- Summary

Quantang Zhao PITZ PPS 11/19/2015

Introduction

- Motivation: Beam dynamics study of PITZ gun without space charge by experiment and simulation.
- Methods:
- Experiment: Shape laser by grid, with low bunch charge ~30 pC. By adjusting the solenoid current to get clear beam grid pictures on Low. Scr.1&2&3.

Laser grid on VC2

Simulation: RF and solenoid peak fields used in ASTRA simulation are from experiment.

 $B_{z,main}$ [T]=5.889×10⁻⁴* I_{main} [A]+7.102×10⁻⁵

Magnification factor analysis method

- Rotation of the image.
- > Projection of the image in x-axes.
- > Calculation of the differential of projection.
- Computation of the magnification factor with the grid edge to edge distance.

 $MF = \frac{Calculated\ distance}{Real\ distance}$

Magnification factor for two directions

> The magnification factor for two directions are same.

Simulation and experiment results for 3 MW

- > The magnification factor from simulation are bigger than the experiment results.
- > The current for solenoid used in the experiment from 290 A \sim 390 A.

Simulation and experiment results for 5 MW

- The magnification factor from simulation are consistent with the experiment results for Screen2 and 3, but for Screen1 still bigger than the experiment results.
- > The current for solenoid used in the experiment from $380 \text{ A} \sim 470 \text{ A}$.

Analysis for 3MW : shift Imain +6[A]

Current of Main Solenoid (A)

For 3 MW in the gun, for screen 1&2: The solenoid fields and current formula can be calibrated very well as follows:

 $B_{z,main}$ [T]=5.889×10⁻⁴*(I_{main} -6) [A]+7.102 ×10⁻⁵

Quantang Zhao| Electron beam imaging study| 11/19/2015 | Page 7

Analysis for 5 MW: shift Imain +6[A]

5 MW Magnification Factor for Screen 3

> For 5 MW in the gun:

For Screen 1, the same with 3MW in the gun, Imain \rightarrow -6 A.

For screen 2 and 3, the results with measured Imain are more consistent than with Imain shift.

Rotation angle analysis

- Rotate the image and make the grid fit to the square, define the rotation angle.
- From simulation: use the larmor angle From ASTRA.

Error from laser grid image on VC2

Rotation angle analysis results

- Imain shift 6 A ~ rotation angle changes about 1 degree, laser grid ~ 1 degree error.
- > The rotation angle with Imain+6[A] seems to be more consistent to the experiment with laser grid error.

Summary

- The beam transverse dynamics without space charge for 3 MW in the gun and 5 MW in the gun is different. The reason of this discrepancy is not clear yet.
 - **??** Solenoid field: different solenoid current range, quadrupole field error of solenoid....

?? RF field: non linear transverse RF field and multipole fields

One possible and reasonable formula of solenoid field and current from above analysis as follows, which should be certified by further study.

 $B_{z,main}$ [T]=5.889×10⁻⁴*(I_{main} -6) [A]+7.102 ×10⁻⁵

→The difference of magnification factor from simulation and experiment for screen 3(3MW &5 MW) should come from the irregular transverse RF field. The screen 1 is near the gun, which has less effect than screen 3 from this kinds of RF filed like coupler kick.

Field and current formula for solenoid should be investigated firstly, and then take solenoid field as a reference for further study of RF field.

Backslide

Gun RF fields used in ASTRA simulation

