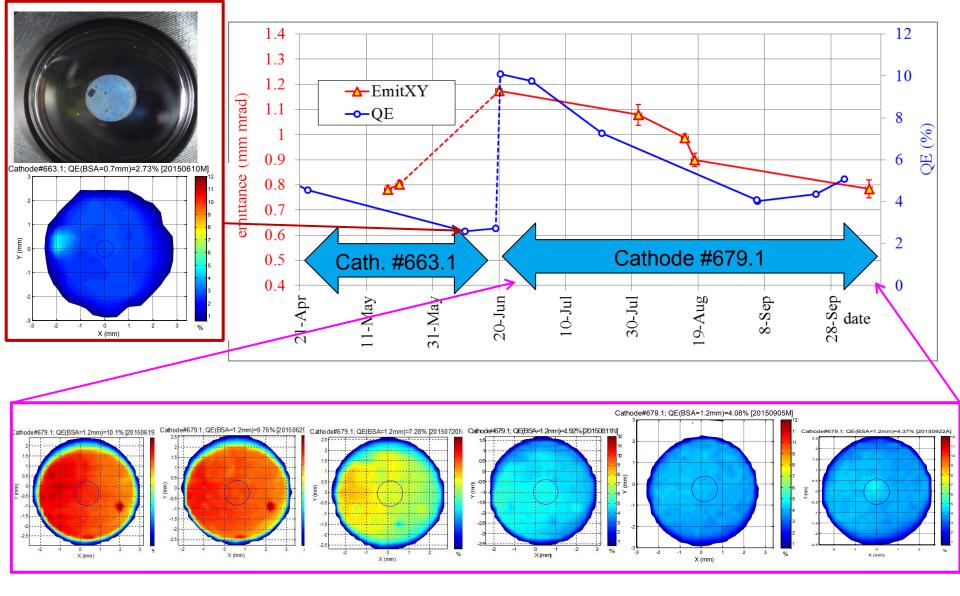
PITZ Run coordination meeting.


M. Krasilnikov 15.10.2015

500 pC measured emittance and cathode QE at PITZ in 2015

Technical shifts

- T1 = Works on RF (uTCA) \rightarrow (W. Koehler + HH-experts):
 - T1a check
 - T1b main works (RF experts)
 - T1c stability measurements
- T2 = Dark current for DCM1 \rightarrow (F. Tonisch)
- T3 = E-beam for LOW.ICT1, HIGH2.ICT? \rightarrow (F. Tonisch)
- T4 = Preparation for TDS; max bunch charge (LT=90%) for 5MWg+MMMG for various BSA=0.2 mm → 3.5 mm → (H. Huck)
- T5 = Acoustic sensor tests (6MW x 650us) \rightarrow (M. Pohl)

T6 = ...

to do:	Technical Shifts (~0900-1700)								
Week	Mon	Tue	Wed	Thu	Fri	Sat	Sun		
42	Oct-12	Oct-13	Oct-14	Oct-15	Oct-16	Oct-17	Oct-18		
Morn.									
7:00	Renier	Renier	Rublack	Rublack	Vashchenko				
to	.								
15:30	T1a,	<mark> T2, T3, _</mark>	<mark></mark>	<u> </u>	<mark>1b,</mark>				
Late	T1c	T 5			· ·				
15:00			T5		<mark>1c</mark>				
to									
23:30									
Night									
23:00									
to									
7:30									
·		1	1				i		

Measurement program

- 1. Emit500 = Emittance measurements for 500 pC, long Gaussian cathode laser pulse and 60MV/m? (GV, MK) → trajectory + stability?
- **2. PITHz** (BP) ?
 - 1. **PITHz4nC** = emittance for 4nC and BSA=3.0mm?
 - 2. <u>PITHzShortB</u>
- 3. Foil4Plasma = Experiments with foils in HIGH1.Scr2,4 (MG)
- 4. TDS = TDS studies: gun + booster at MMMG; Scan: bunch length vs (BSA, charge) (HH, MK)
 - 1. TDS long
 - 2. TDS short (BSA=2; 3mm, first $Q/\sigma_t \rightarrow max(LT)$, then min(Xyrms@EMSY2))
- 5. Emis =Repeat some emission studies (esp., 1.5MW is not understood) (MK, but from 26.10.2015)
- 6. GunTests YR
 - 1. Fast gun recovery tests? (+O.Hensler) 29.10M + 30.10A 2x2hurs
 - 2. Acoustic sensor tests (6MW x 650us provoke gun IL) (+Mario)
- 7. CoupKick = Remaining coupler kick studies (IgI)
 - 1. Test solenoid movement (e-beam focused at LOW screens vs. solenoid angles) (+MK)
- **8. QE** = QE-map and QE?

to do:	Measurements						to do:	Measurements							
Week	Mon	Tue	Wed	Thu	Fri	Sat	Sun	Week	Mon	Tue	Wed	Thu	Fri	Sat	Sun
43	Oct-19	Oct-20	Oct-21	Oct-22	Oct-23	Oct-24	Oct-25	44	Oct-26	Oct-27	Oct-28	Oct-29	Oct-30	Oct-31	Nov-01
Morn.				Foil4P	lasma			Morn.		CoupKick (solAngle)		GunTests			
7:00	Gross	Gross	Gross	Gross	Gross	P ck	Rublack	7:00	Krasilnikov	Krasilnikov		.51lnikov	Krasilnikov	Krasilnikov	Kras: v
to	Isaet	Isaev	Isaev	Lishilin	Lishilin	L.	Lishilin	to	Rublack	Rublack	Rubl	Melkumyan	M	Melkumyan	Melk <mark>u</mark> n
15:30						-		15:30	PITHz4nC	•		M			
Late		1				O		Late			<u>n</u>	short	m a	5	T
15:00	Renier	3.	Renier		C Juck	Huck	Huck	15:00	Boonpornpras	Boonpor	oonpornpras	Rublack	Vash 2	shchenko	Vash <mark>B.</mark> co
to	Kalantaryan	Kalant.	Kalantaryan	T	OUP	Gross	Gross	to	Lishilin	I V	Lishilin	Huck	Zha	Thao	Z
23:30		~	>	3.	- ~		2	23:30				PITHz	GunTests	5	
Night				15	lick		Q	Night				ShortB			
23:00	Good	Good	u	Good	*	Good	hd	23:00	Vast	Vashchenko	Vashchenko	Boonpornpras	Boonpornpras	🔁 🧖 ras	Boonpornpras
to	Melkumyan	Melkumyan	Melkumyan	Kalantary	ryan	Isaev	15aev	to	Ралак	Pathak	Pathak	Pathak	Pathak		Pathak
7:30	-	-	-					7:30			QE				

Possible reasons:

- Not optimized beam trajectory for 6.3 MW: beam trajectory was optimized to be steering free through the booster but it not necessary should provide the smallest emittance. Proposal: scale magnets currents according to the relation of beam momenta, try other trajectories for 500 pC
- Amplification of beam distortions (asymmetries) has larger impact on beam quality for higher gun gradients than gained emittance reduction. Proposal: as charge density plays a role try to compare emittance for different beam charges: 100 pC, 250 pC, 1 nC

Additionally \rightarrow short Gaussian cathode laser pulses:

• Optimize emittance for 250 and 100 pC?

Timeline:

- 3 shifts for the 1st point
- 30 shifts for the 2nd point

PITHz = E-beam studies for THz option (PB)

PITZ Photo injector Test Facility az

PITHz4nC = Preliminary Beam optimization for SASE FEL

Objective:

4 nC beam optimization and transport

Initial setting

- Long Gaussian laser pulse length: ~12 ps FWHM
- Gun: 6 MW in the cavity, 200 us RF pulse duration
- Booster: 3 MW in the cavity, 200 us RF pulse duration

Procedure

Optimization of machine parameters

- 1. Adjust BSA=3.0mm
- 2. Find laser transmission to produce bunch charge of **4 nC** (LOW.FC2+attenuator, HIGH1.ICT1) at gun+booster=MMMG phases
- 3. LEDA scan, set to MMMG phase
- 4. HEDA1 scan, set to MMMG phase
- 5. Optimize I_{main} for minimum transverse emittance by measuring emittance vs. I_{main} using EMSY1

Beam Transport

- 6. Set I_{main} for the minimum emittance
- 7. Measure the temporal profile using TDS
- 8. Transport beam to and focus beam at High2.Scr2 (Quadrupole magnets downstream from the High1.Scr1 can be used.)
- 9. Print and save beam images from all screens (Low.Scr1...Low.Scr3, High1.Scr1 ... High1.Scr5, PST.Scr1 ... PST.Scr5, High2.Scr1 and High2.Scr2)
- 10. Measure momentum spread using HEDA2
- **Option:** LPS tomography (D.Malyutin tool) using HEDA1 and HEDA2

PITHz = E-beam studies for THz option (PB)

<u>PITHzShortB</u> = Preliminary Beam optimization for CTR experiments

Objective:

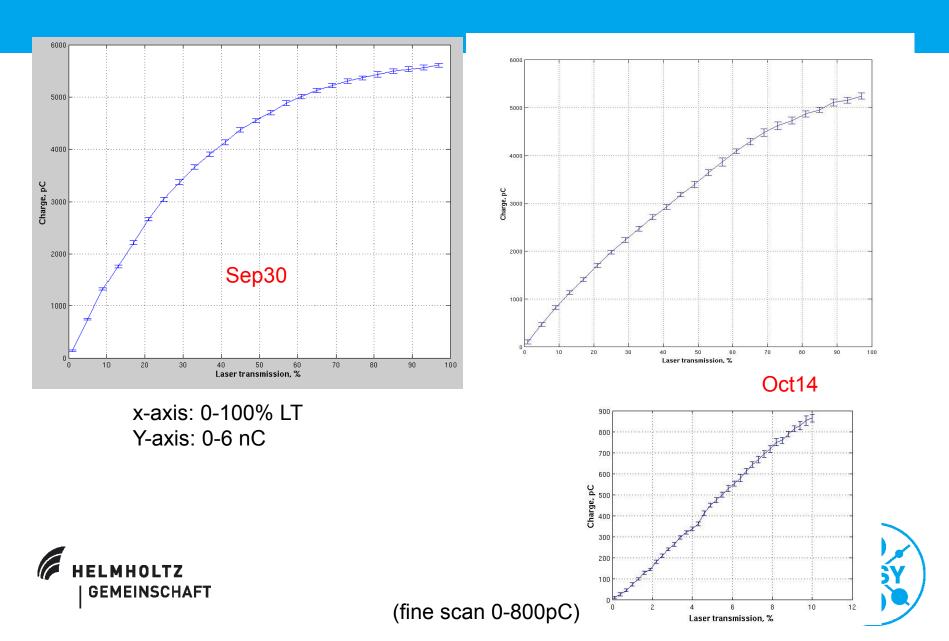
Studies of velocity bunching using the CDS booster for **100 pC** electron beam

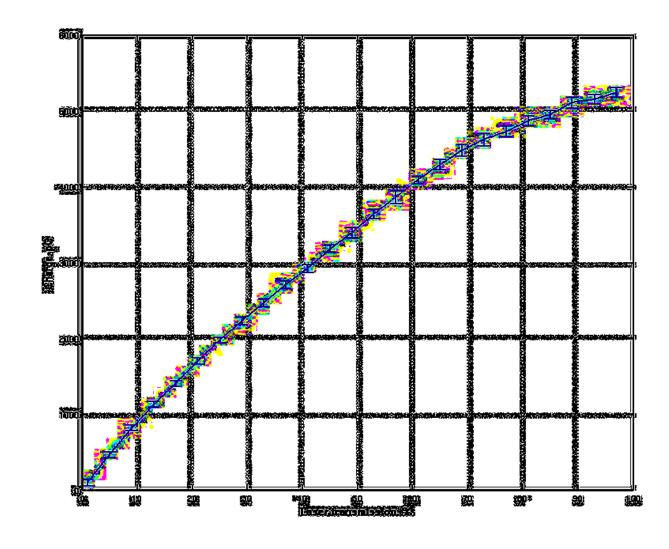
Initial setting

Laser Gaussian pulse length: short **2.5 ps** FWHM Gun: **6 MW** in the cavity, **200 us** RF pulse duration Booster: **3 MW** in the cavity, **200 us** RF pulse duration

Procedure

- 1. Fix laser transmission at 50%
- 2. Adjust BSA, as small as possible, for bunch charge of 100 pC using Low.FC2 (gun+boo=MMMG)
- 3. LEDA Scan, set to MMMG phase
- 4. HEDA1 scan, set to MMMG phase
- 5. Transport beam to PST.Scr1
 - I_{main} set for minimum beam size at PST.Scr1
 - Check charge at High1.ICT1
- 6. Measure bunch length VS booster phase using TDS (scan for the minimum bunch length)

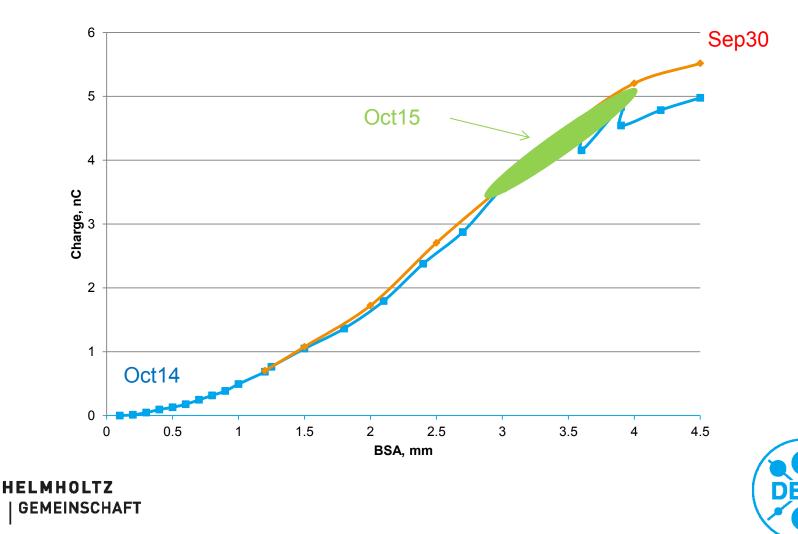



Photocathode laser: short / long Gaussian gun + booster at MMMG;

Scan: bunch length vs (BSA, charge)

	BSA=0.2mm	BSA=0.4mm	 	 	BSA=2.4mm	BSA=3.0mm
?Q=20pC						
Q=100pC						
Q=250pC						
Q=500pC						
Q=750pC						
Q=1nC						
step 0.25nC						
Q=4nC						

Charge vs. Laser Transmission

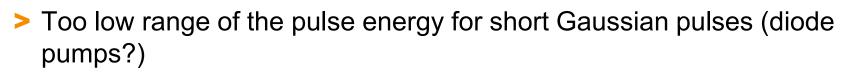


Charge vs BSA

FC2_LT90(Oct14/15, 5MWg)

← FC2_LT70(Sep30, 6 MWg)

F


PIT Z Photo Injector Test Facility

Photocathode laser: short / long Gaussian Gun (5MWg) + booster (3MWb) at MMMG;

1. BSA/charge matrix \rightarrow Scan: bunch length vs (BSA, charge) see Table

2. Charge scan until 4 nC (250 pC steps), to reproduce previous results that don't fit well to simulations, and also because we weren't able to go so high before. To verify that measurements are not impaired by phase, for each charge do booster-MMMG and MMMG +/-5 deg. Occasionally check that we are still at gun-MMMG.

3. Set up HEDA2 for highest possible resolutions, then take some pictures for different booster phases.

- Probably solenoid was not adjusted for 1.5MW
- Automatic Phi0 fitting procedure was applied only at the end of measurements

Pgun	Phase w.r.t. Phi0	BSA=0.8mm	BSA=1.8mm	
	90 deg	•	,	
6 MW	49 deg	•		
	30 deg	*		
3.375 MW	90 deg	R	•	
	42 deg	• • • • • • • • • • • • • • • • • • •		
1.5 MW	90 deg	¥	>	

- Soal: measurement of scattering angles for plasma cell electron window
- Results: Saved images of High1.Scr4 and High1.Scr5 (or possibly a PST screen) using YAG screens
- Laser: long Gaussian 0.5mm BSA
- > Gun: 6MW in the gun; pulse length: >200us; on-crest
- > Booster: 3MW in the booster; pulse length: 200us; on-crest
- > Bunch charge: 100pC
- > Time estimate: 0.5 shifts

- Soal: Investigation of electron beam focusing onto plasma position
- Results: Magnet settings; saved images of Low.Scr1 to High1.Scr3 using YAG screens
- Laser: long Gaussian 0.5mm BSA
- > Gun: 6MW in the gun (+ option: 5MWg); pulse length: >200us; on-crest
- > Booster: 3MW in the booster; pulse length: 200us; on-crest
- > Bunch charge: 100pC; 50pC; 500pC
- Time estimate: 1.5 shifts

Experiment 1. Solenoid tile test

Goals:

Reference setup (e.g. 21.06.2015M): BSA=1.2mm, 5MWg, GunPhase=MMMG, 500pC, the Booster off, solenoid \rightarrow focusing at LOW.Scr 2 and 3. Bucking solenoid is off. Scan the solenoid tilt angle and take pictures at LOW.Scr 2 and 3.

Plan of measurement:

Set BSA 1.2 mm Charge 500pC Gun->5MW power, MMMG phase Focus the beam at low.Src3 Adjust the solenoid current to find the 'cross'-like beam structure Charge the main solenoid tilt angle and document the changes of the beam transverse shape Move solenoid to the initial position(!!!!).

Required experts:

Mikhail Krasilnikov Michael Winde

Experiment 2. Beam acceleration w/o forward RF power

Goals:

Reference setup (e.g. 21.06.2015M): BSA=1.2mm, 5MWg, GunPhase=MMMG, 500pC, the Booster off, solenoid → focusing at HIGH1.Scr1 + 7A in order to see the beam ears. Bucking solenoid is off.

Change laser timing in order to place the beam at the 2nd horn of the reflected power. And observe the beam shape change.

Plan of measurement:

Set BSA 1.2 mm Charge 500pC Gun->5MW power, MMMG phase Focus the beam at HIGH1.Scr1 + 7A. Find the Beam ears. Change the laser timing settings to place the beam at the end of the pulse. Where already no forward RF but still reflected (2nd horn at the reflected power) Play with the gun and booster RF phases to find the beam the the sreen. Take pictures to the beam at the screen.

Restore the timing settings.

Coupler kick: additional studies (IgI, MK)

- Idea: try to use rf pulse location "w/o forward" (but still rf power in the cavity)
- > Measurements:
 - 1. BSA=1.2mm → VC2
 - Pgun=5MW, adjust the rf pulse length to ~1st pulse start+10us (e.g. using dark current and charge at FC)
 - 3. Tune gun temperature (stabilization?)
 - 4. FB→OFF
 - 5. Beam at LEDA \rightarrow MMMG phase
 - 6. Q(MMMG)=500pC (LOW.FC2, check Imain for a good focusing at LOW.Scr2)
 - 7. Measure Q as a function of rf pulse length \rightarrow determine range
 - 8. Beam at LEDA as a function of the rf pulse length for the obtained range. ?Adjust SPA to keep the same <PZ> (possible MMMG phase readjustment?) → table (Trf, SPA, SPPhase). !??FB??
 - 9. Beam at HIGH1.Scr1 (no booster, Imain=361A?) to see transverse tails. Apply the table, for each setup (rf pulse length Trf) save the image at HIGH1.Scr1