The Larmor angle studies for beam asymmetry source investigations.

Igor Isaev PITZ Zeuthen, 01.10.2015

Larmor angle

Larmor angle

Larmor angle simulations

Measurements and data analysis

The beam features are not symmetric and located at a bit different angles compare to the beam center

normal polarity

opposite polarity

Measurements and data analysis

Beam at High1.Scr1

Main solenoid current is 360 A, normal polarity, bucking current is 0

Tilt orange = -8 deg

Tilt blue = -14deg

Combinations of beam features give us following angles:

Angle 3 = 67 deg Angle 4 = 70 deg Angle 5 = 104 deg Angle 6 = 119 deg

=>

<u>Z 3=0.278 m</u> <u>Z 4=0.273 m</u> <u>Z 5=0.2084 m</u> <u>Z 6=0.0161 m</u> Main solenoid current is 360 A, opposite polarity, bucking current is 0

Tilt orange = -75 deg

Tilt blue = -84deg

Summary

PITZ Photo Injector Test Facility

- The most probable places of the beam irregularity sources are:
 - The center of the main solenoid
 - \circ $\,$ The transition from the coaxial coupler to the full gun cell
- The z location at 0.161 m is inside the full cell has very low probability of the fields distortions.
- The combination of the main solenoid tilt and the RF coupler field asymmetry could be reason of that beam irregularity.

