The Larmor angle studies for beam asymmetry source investigations．
 The Larmor angle studies for bean asymmetry source investigations．
 ．

路
Igor Isaev
PITZ
Zeuthen，01．10．2015
Igor Isaev
PITZ
Zeuthen，01．10．2015
Igor Isaev
PITZ
Zeuthen，01．10．2015
都

 ，

Larmor angle

Positive solenoid polarity Negative solenoid polarity

Larmor angle for positive and negative solenoid polarities

Larmor angle simulations

Positive solenoid polarity

Negative solenoid polarity

Measurements and data analysis

Beam at High1.Scr1

Main solenoid current is 360 A , normal polarity, bucking current is 0

Main solenoid current is 360 A , opposite polarity, bucking current is 0

Measurements and data analysis

The beam features are not symmetric and located at a bit different angles compare to the beam center

Measurements and data analysis

Beam at High1.Scr1

Main solenoid current is 360 A , normal polarity, bucking current is 0

Tilt orange $=-8 \mathrm{deg}$

Tilt blue = -14deg

Main solenoid current is 360 A , opposite polarity, bucking current is 0
Combinations of beam features give us following angles:

> Angle $3=67 \mathrm{deg}$ Angle $4=70 \mathrm{deg}$ Angle $5=104 \mathrm{deg}$ Angle $6=119 \mathrm{deg}$ $=>$

Z 3=0.278 m
Z $4=0.273 \mathrm{~m}$ Z 5 $=0.2084 \mathrm{~m}$ Z6=0.0161 m

Tilt orange $=-75$ deg

Summary

The list of possible positions:

- 0.2755 m
- 0.1899 m
- 0.1610 m
- 0.2084 m
- 0.2730 m
- 0.2780 m

- The most probable places of the beam irregularity sources are:
- The center of the main solenoid
- The transition from the coaxial coupler to the full gun cell
- The z location at 0.161 m is inside the full cell has very low probability of the fields distortions.
- The combination of the main solenoid tilt and the RF coupler field asymmetry could be reason of that beam irregularity.

