In-situ X-ray Reflectivity Analysis of Alkali Antimonide photocathodes

Presenter: Zihao Ding

Department of Materials Science & Engineering, Stony Brook University

Electron Photon Instrumentation Center@Stony Brock and Brockinsee

* Stony Brook University

Outline

- > Introduction of alkali antimonide photocathodes
- Basics of X-ray reflectivity
- \succ Experimental details and results of a series of K₂CsSb, Cs₃Sb photocathode
 - Sequential evaporation
 - ➤ co-evaporation
 - Sputtering deposition
- Summary

Introduction

- > Alkali Antimonide (K_2 CsSb, Cs₃Sb, ...) excellent photocathode candidate for accelerator
 - High quantum efficiency
 - Low emittance
 - ➤ Good lifetime
 - ➢ Fast response

Cathode type	Cathode	Typical wavelength &	Quantum efficiency (electrons	Vacuum for 1000 h (Torr)	Gap energy+ electron affinity, Ec+Ec (eV)	Thermal emittance (microns/ mm(rms))	
		(nm), (eV)	per photon)		L_{G} · L_{A} (cv)	Eq. (7)	Expt.
PEA:	Cs ₂ Te	211, 5.88	0.1	10 ⁻⁹	3.5 [42]	1.2	0.5 ± 0.1 [35]
mono-alkali		264, 4.70	-	-	"	0.9	0.7 ± 0.1 [35]
		262, 4.73	-	-	"	0.9	1.2 ± 0.1 [43]
	Cs₃Sb	432, 2.87	0.15	?	1.6+0.45 [42]	0.7	?
PEA:	Na ₂ KSb	330, 3.76	0.1	10^{-10}	1+1 [42]	1.1	?
multi-alkali	(Cs)Na ₃ KSb	390, 3.18	0.2	10^{-10}	1+0.55 [42]	1.5	?
	K ₂ CsSb	543, 2.28	0.1	10^{-10}	1+1.1 [42]	0.4	?
	$K_2CsSb(O)$	543, 2.28	0.1	10^{-10}	1 + < 1.1[42]	${\sim}0.4$?

D.H. Dowell et al. / Nuclear Instruments and Methods in Physics Research A 622 (2010) 685–697

Introduction – Roughness From Traditional Recipe

100.00 nm

0.00 nm

Previous study shows rms roughness of 25nm over 100 nm spatial period on a K₂CsSb photocathode grown by sequential evaporation.

S. G. Schubert, et al, APL Mater. 1, 032119 (2013)

Introduction – Effect of roughness on thermal emittance

$$\varepsilon_{rough} = \sigma_{x,y} \sqrt{\frac{\pi^2 a^2}{2m_0 c^2 \lambda} Ee}$$

D. Xiang et al. Proceedings of PAC07, Albuquerque, New Mexico, USA

Field dependent emittance growth: 20 nm amplitude, 80 nm period

Emittance growth at 20 MV/m, period 4 x amplitude.

Introduction – In-situ Growth System

Basics of X-ray Reflectivity

X-ray reflectivity: a fast and non-destructive technique to characterize thin film properties

Basics of X-ray Reflectivity

Parratt recursion, Parratt, 1954.

Parratt, L. G. (1954). Phys. Rev. 95, 359.

Multilayer thin film \rightarrow stratified medium For *j*th layer:

$$r_{j,j+1} = \frac{q_{z,j} - q_{z,j+1}}{q_{z,j} + q_{z,j+1}} \Rightarrow$$
$$r = \sum_{j=0}^{n} r_{j,j+1} e^{iq_z \sum_{m=0}^{j} d_m}$$

Nevot-Croce model for roughness calculation

$$r'_{j,j+1} = r_{j,j+1}e^{-2k_{z,j}k_{z,j+1}\sigma_j^2}$$

 \Rightarrow Intensity decreases exponentially with σ_j^2

X-ray and Neutron Reflectivity, J. Daillant, A. Gibaud

Introduction – Previous Studies

Crystal structure evolution of K₂CsSb photocathode grown by traditional recipe

- Critical Sb-crystallization thickness: 4nm
- Surface roughening occurs due to transition from crystalline Sb (Sub nm)to crystalline K₃Sb (a few nm)

Ruiz-Osés et al. APL Mater. 2, 121101 (2014)

Experimental details – Sequential deposition

- > Sequential deposition *Towards a smoother surface*
 - Idea: to prevent Sb from crystallizing.
 - Critical thickness for transition from amorphous Sb to crystalline Sb is <u>4nm</u> !

(M. Ruiz-Osés et al., APL Mat. 2, 121101 (2014))

 \circ Procedures:

Results - Sequential deposition

Layer ID	Recipe	QE after deposition	Total film thickness (XRR)	Roughness (XRR)
l = 6	Cs-K-Sb-Cs-	4.9%	469 Å	32.0 Å
	K-Sb/Si			
l = 5	K-Sb-Cs-K-	0.88%	449 Å	36.0 Å
	Sb/Si			
= 4	Sb-Cs-K-	-	200 Å	21.3 Å
	Sb/Si			
l = 3	Cs-K-Sb/Si	3.1%	174 Å	13.2 Å
l = 2	K-Sb/Si	0.16%	141 Å	10.5 Å
l = 1	Sb/Si	-	35 Å	2.9 Å
l = 0	Si substrate	-	-	3.1 Å

2θ (**deg**.)

XRR simulation results of sequentially evaporated cathode

Experimental details – K/Cs co-evaporation

- ➢ K+Cs co-evaporation
 - Co-evaporate alkali materials on 1.5 nm Sb layer.
 - $\circ~$ Using MgO as the substrate.
 - \circ Procedures:

Results and Analysis

Final cathode chemical formula: K_{0.35}Cs_{0.89}Sb

 XRF analysis results of co-dep sample.
→ Calculated stoichiometry shows Sb excess, K-deficient Chemical formula: K

Results and Analysis

XRR simulation result of K/Cs co-dep sample.

Colored solid lines: simulation; Open circle: measured data. Error noted is 5%

of change in logarithm FOM function

Scattering length density (SLD) vs. thickness

Re (SLD) =
$$2\pi\delta/\lambda^2 = r_e\rho_e$$

 \rightarrow Simulated electron density decreases as cathode grows thicker.

 \rightarrow Evaporated photocathode might be porous

Results and Analysis – Cs/Sb co-evaporation

Recent:

➤ Co-evaporation of Cs/Sb @ 90 °C on Si (100)

- \circ XRF fitted result, chemical formula Cs_{2.6}Sb
- QE @ 532 nm: ~4%

- \circ XRR fitted result
- $\circ~$ Not uniform in electron density

Experimental details – Sputter deposition

Towards a smoother photocathode with high QE – Sputter all materials at the same time.

Ο

K₂CsSb target

Experimental details – Sputter deposition

In-situ growth chamber with sputter system installed at G3, CHESS t Hold

BNL Patent Hold

- 20 mTorr of Argon atmosphere.
- Substrate temperature: \sim 120 °C
- Procedures
 - 20W to pre-sputter for 2-3 min.
 - 10W to sputter (0.2 Å/s)
 - Final Cs evaporation, using SAES Getter Cs source

- 1 MgO substrate (F009): 3 layers of 10 nm (QCM) thick each.
- 1 Si substrate (F010): 1 layer of 30 nm thick (QCM)

Results – Sputter deposition

XRD images on F009 (MgO)

Results – Sputter deposition

XRR simulation results of sample F009 (Left) and sample F010 (Right).

Simulated SLD (electron density) vs. thickness
→ Two sputtered cathode exhibit higher electron density than evaporated cathode.

QE @ 532 nm: 1%

XRR fitted result

Uniform in electron density

Roughness vs. thickness plot of alkali antimonide grown by different methods, with QE marked Dots: Cs₃Sb; Lines: K₂CsSb

Summary

- Summary:
 - X-ray reflectivity is a useful in-situ technique in characterizing the roughness, thickness and density of photocathode growth, stoichiometry information obtained from XRF analysis helps the XRR simulation.
 - \circ Co-evaporated CsK₂Sb/Cs₃Sb may end up in a smoother surface with the same quantum efficiency compared to sequentially-evaporated CsK₂Sb in previous study.
 - Sputtered CsK₂Sb exhibits the best surface roughness, with acceptable quantum efficiency. In comparison, sputtered Cs₃Sb have the same QE but is much rougher, further investigation needed.

- > Acknowledgement:
 - Sincere thanks to my advisor Dr. John Smedley, to my colleagues: Mengjia Gaowei, Susanne Schubert, John Sinsheimer, Dr. Erik Muller, John Walsh, etc...
 - HZB colleagues: Martin Schmeisser, Julius Kuehn

Thank you for your attention!

Basics of X-ray Reflectivity

Interaction of X-ray with matter – Refractive index:

n=1-δ+iβ

Dispersive correction

Absorption correction

Fresnel reflectivity

Amplitude

n=1 k_{0} E_{0} α_{0} k_{r} k_{r} k_{r} E_{r} α_{r} α_{t} $n=1-\delta+i\theta$ k_{t} E_{t}

Critical angle for total reflection $\theta_c = \sqrt{2\delta}$

Plus absorption of the X-ray beam Fresnel reflectivity becomes:

$$R(\theta) = \left| \frac{\theta - \sqrt{\theta^2 - \theta_c^2 - 2i\beta}}{\theta + \sqrt{\theta^2 - \theta_c^2 - 2i\beta}} \right|^2$$

→ Reflectivity curve can be calculated based on the electron density and the absorption coefficient of the material.

 $r(\theta)$

 \geq

 $\frac{\text{Intensity}}{R(\theta)} = \frac{\theta - \sqrt{\theta^2 - \theta}}{\theta - \sqrt{\theta^2 - \theta}}$