Case Study of IR/THz source for Pump-Probe Experiment at the European XFEL

Simulations of the IR/THz Options at PITZ (High-gain FEL and CTR)

<u>Outline</u>

- Introduction
- Simulations of High-gain FEL (SASE)
- Simulation of CTR
 - Summary & Outlook

Prach Boonpornprasert

7th Market of Accelerator Ideas DESY, Hamburg 1.09.2015

PITZ Proposal for IR/THz source at PITZ

Simulations of the IR/THz Options at PITZ (High-gain FEL and CTR) 7th Market of Accelerator Ideas, DESY, Hamburg, 1.09.2015

PITZ PITZ Beamline Overview

- Photocathode RF Gun
- Cut Disk Structure (CDS) Booster
- UV photocathode laser
 - Cylindrical pulse shape (Gaussian, flat-top).
 - 3D-ellipsoidal pulse shape
- Electron beam diagnostics stations
- Radiation stations for simulations studies
 - CTR station

Extension for SASE FEL

Key Parameters	
Laser temporal length	2 - 20 ps FWHM
Bunch charge	few pC … 4 nC
Maximum mean momentum <p<sub>z></p<sub>	~22 MeV/c

Prach Boonpornprasert

PITZ SASE FEL: Beam Dynamics Simulations

Simulation Tool: ASTRA code

Goals of the beam transport:

- <P_z> ~ 15 MeV/c at the undulator entrance
- Symmetric transverse beam sizes and emittances at the undulator entrance

Input for ASTRA

Laser pulse shape	Flattop
Laser temporal length	20 ps FWHM
Rms laser spot size	1.25 mm
Bunch charge	4 nC
Z _{start} to Z _{end}	0 (cathode) to 22.500 m
Gun peak E-field	60 MV/m
Booster peak E-field	10 MV/m (for <p<sub>z> ~ 15 MeV/c)</p<sub>
Gun phase	Optimized for: <i>High peak current</i> <i>Low energy spread</i>
Booster phase	
Solenoid fields	

Simulations of the IR/THz Options at PITZ (High-gain FEL an 7th Market of Accelerator Ideas, DESY, Hamburg, 1.09.2015

Evolutions of transverse beam sizes and emittances

The longitudinal profiles at undulator entrance

PITZ SASE FEL: Radiation Calculations

- GENESIS 1.3 code (Version 2) was used for numerical calculations of SASE FEL
- Input for GENESIS:
 - Time-dependent mode, space-charge effect included.
 - Helical undulator with period length of 40 mm
 - SASE FEL, Radiation wavelength of 100 μm (3 THz)

Simulations of the IR/THz Options at PITZ (High-gain FEL and CTR) 7th Market of Accelerator Ideas, DESY, Hamburg, 1.09.2015

Prach Boonpornprasert

C

HELMHOLTZ

ASSOCIATION

PITZ CTR: Beam Dynamics Simulations

- Simulation Tool: ASTRA code
- The bunch compressed by velocity bunching in the booster.
- Minimum <P_z> is limited to ~15 MeV/c to prevent too big emission angle (θ α 1/γ)

Input Parameters for ASTRA		
Laser pulse shape	Gaussian	
Laser temporal time	2.43 ps (FWHM)	
Rms laser spot size	1 mm	
Bunch charge	20 pC to 1 nC	
Z _{start} to Z _{end}	0 (cathode) to 16.30 m	
Gun peak field	60 MV/m	
Booster peak field	18 MV/m	
Gun phase*	0°	
Booster phase*	-60°	

*with respect to maximum momentum gain phase

C

PITZ CTR: Radiation Calculations

- CTR calculations were performed by using Generalized Ginzburg-Frank Formula [Casalbuoni et al., TESLA 2005-15].
- Assumptions and input:
 - Perfect conductor and circular screen with radius of 15 mm.
 - Backward radiation, far-field regime calculation
 - E-beam with radius of 0.5 mm is normal incident to the screen.

Preliminary S2E simulations for the SASE FEL and the CTR using the PITZ accelerator were studied.

Comparison to the other IR/THz sources

(the radiation from the PITZ sources are just estimation)

Reference: Anke-Susanne Müller, Rev. Accl. Sci. Tech., 03, 165 (2010)

Simulations of the IR/THz Options at PITZ (High-gain FEL and CTR) 7th Market of Accelerator Ideas, DESY, Hamburg, 1.09.2015

Plan to be implemented in the simulations studies:

- SASE FEL: Planar undulator
- **CTR:** an oblique screen, near-field regime
- Bunch compression using the HEDA2 section
- Radiation transport

The CTR experiment is foreseen to take place in 2016

► We are seeking for:

- Planar/helical undulator with period length of ~40 mm and K ~ 1-2
- Bunch compressor

PITZ Team

M. Yurkov, Y. Schneidmiller, B. Marchetti

► C. Thongbai, S. Rimjaem

DESY, Hamburg

CMU, Thailand

Thank you for your attentions!

