# Emittance measurements with the gun and laser operated close to E-XFEL startup conditions.

- PITZ gun and laser operated at E-XFEL conditions
- Simulations with realistic laser transverse shape
- Emittance for E-XFEL conditions
- Emittance for various beam charges
- Summary and outlook

Grygorii Vashchenko FEL 2015 Daejeon, 24.08.2015





#### **PITZ setup**





Gun: 1.3 GHz, 1.6 cells, normal conducting copper cavity. Up to 7 MeV/c beam momentum. CDS: 1.3GHz, 14 cells, normal conducting copper cavity. Up to 15 MeV energy gain.



# Gun and laser setup corresponding to E-XFEL commissioning parameters





Gun setup:

- 600 us RF pulse length
- 53 MV/m on-axis peak field on the cathode
   → P<sub>z</sub> ~ 6.1 MeV/c

Laser setup:

- Gaussian longitudinal pulse shape with FWHM of about 12 ps (estimated, no diagnostics available at the moment)
- Quasi-uniform transverse profile







- Emittance measurements for electron beams of various charges using slit scan
- Emittance as a function of main solenoid current is measured for various laser spot sizes on the cathode and gun launching phase fixed to MMMG phase
- Emittance as a function of main solenoid current is measured for various gun launching phases and fixed laser spot size on the cathode which delivers the minimum emittance as found in previous measurement.



$$\varepsilon_{n} = \frac{\sigma_{x}}{\sqrt{\langle x^{2} \rangle}} \beta \gamma \sqrt{\langle x^{2} \rangle \cdot \langle x'^{2} \rangle - \langle xx' \rangle^{2}}$$

correction factor ( >1 ) introduced to correct
for low intensity losses from beamlet
measurements => conservative estimation

#### 100% RMS emittance



## Beam dynamics simulations with realistic transverse laser shape





#### Real laser transverse profile

#### Generated laser profile with fit parameters for simulations





## Emittance measurements for 500 pC, MMMG gun phase, laser spot size scan



European X-FEL commissioning phase requirement on emittance is fulfilled



## Emittance measurements for 500 nC, rms laser spot size of 0.3 mm, gun phase scan





#### **Emittance for different charges**





Emittance measurements in 2011 were performed for the gun on-axis peak field of 60 MV/m (53MV/m in 2015) and flat-top laser pulse shape with FWHM of 21.5 ps (Gaussian with 11-12 ps FWHM in 2015)



#### **Summary and outlook**



- European X-FEL commissioning phase requirement on emittance is fulfilled
- Emittance for electron beam charges of 100, 250, 500 and 1 nC, gun operated at 53 MV/m on-axis peak field and Gaussian laser temporal profile with FWHM of 11-12 ps was measured.

| Emittance in 2015 |               |           | Emittance in 2011 |               |           |
|-------------------|---------------|-----------|-------------------|---------------|-----------|
| Charge, nC        | Emittance, um | Error, um | Charge, nC        | Emittance, um | Error, um |
| 1                 | 1.139         | 0.07      | 2                 | 1.251         | 0.06      |
| 0.5               | 0.797         | 0.03      | 1                 | 0.661         | 0.05      |
| 0.25              | 0.603         | 0.01      | 0.25              | 0.328         | 0.01      |
| 0.1               | 0.448         | 0.01      | 0.1               | 0.212         | 0.01      |
|                   |               |           | 0.02              | 0.121         | 0.01      |





### Thank you for attention!



Grygorii Vashchenko | FEL 2015 | 24.08.2015 | Seite 10

## Emittance measurements for 1 nC, MMMG gun phase, BSA scan





### Emittance measurements for 250 pC, MMMG gun phase, BSA scan





