Beam Dynamics Simulation for the Upgraded PITZ Photo Injector applying various Photocathode Laser Pulses

- Update results
- Summery

Mahmoud Bakr

Simulation results PITZ, 25.06.2015

Introduction

> Motivation: Answer the next question

```
\rightarrow Does the other charges (20 pC ~4 nC)?
```

Main idea: The reduction of the emittance using 3D ellipsoidal laser compared to Flat top laser is not constant but depends on the charge?

PITZ setup used in the simulations

ASTRA Simulation setup

Two different photo cathode laser shapes have been considered in beam simulations:

- Longitudinal distribution: Flattop. Transverse distribution: radial homogeneous
- Uniformly filled 3D ellipsoidal distribution

Fixed parameters during emittance optimization

- Bunch charges: 20 pC ~ 4 nC,
- \succ Electrons thermal kinetic energy at the cathode (0.55 eV),
- ➢ Gun gradient: 59.8 MV/m corresponding to Pz~6.7 MeV/c beam momentum after the gun
- CDS booster starting position: 2.73 m
- CDS booster gradient: 17.6 MV/m corresponding to Pz~22 MeV/c final beam momentum
- ≻ Reference point: EMSY1 (Z=5. 27 m) \rightarrow best emittance for 2 profiles with the same bunch length

The following parameters were optimized in the simulations:

- Rms laser beam size,
- Gun Lunching phase,
- Solenoid current

Results for 4 nC

flat-top laser

Opt. emittance 1.862

3D Ellipsoidal laser

Opt. emittance 1.1012

Results for 50 pC

flat-top laser

Opt. emittance 0.1249

3D Ellipsoidal laser

Opt. emittance 0.1001

General conclusions

General conclusions

Summery

Charge nC	Flat top	3D ellips.	Reduction
1	1.062	1 1 0 1 2	44.0/
4	1.862	1.1012	41%
2	1.008	0.6169	39%
1	0.6147	0.4063	34%
0.5	0.4279	0.3015	30%
0.25	0.327	0.2173	34%
0.1	0.1948	0.1413	27%
0.05	0.1249	0.1001	20%
0.02	0.0647	0.0612	5%

Using 3D ellipsoidal laser profile leads 20 pC \rightarrow 4nC :

a. T. emittance for charges > 0.25 nC \rightarrow 34-42% reduction

b. T. emittance for charges < 100 pC \rightarrow 5-27 % reduction

To be done soon:

- 1- Precise simulations for < 100 pC
- 2- FEL paper
- 3- FEL poster
- 4- THz simulation during my staying in japan

Thanks see you next year

Comparison for 2 nC

Transverse projected rms emittance and rms beam size along the PITZ beamline at the emittance optimization screen. Beam current and transverse emittance distribution in the bunch at the emittance optimization screen

Comparison for 2 nC

Electron beam transverse and longitudinal phase spaces at EMSY for flattop and 3D ellipsoidal laser profiles.

		Bunch length mm	
	Flattop	3D ellipsoidal	diffe
nC			
4	2.454	2.461	0.007
2	2.226	2.241	0.015
1	2.02	2.041	0.021
0.5	1.878	1.861	-0.017
0.25	1.788	1.8	0.012
0.1	1.807	1.708	-0.099
0.05	1.763	1.671	-0.092
0.02	1.734	1.645	-0.089

