Simulation results of the beam emittance using a flat-top and 3D ellipsoidal laser pulse shape for gun 4.2 at PITZ

Introduction

- > ASTRA Simulation setup
- Results
- Conclusions

Mahmoud Bakr

Simulation results PITZ, 28.05.2015

Introduction Transverse emittance for 3 different laser shapes (Zboo=2.7m)

For 1 nC at 6.7 MeV/c after the gun and 24 MeV/c after the booster.

(Martin Khojoyan)

Introduction

> Motivation: Answer the next question

 \rightarrow Does the other charges (20 pC ~2 nC) behave the same tendency like 1 nC?

Main idea: The reduction of the emittance using 3D ellipsoidal laser compared to Flat top laser is not constant but depends on the charge?

PITZ setup used in the simulations

ASTRA Simulation setup

Two different photo cathode laser shapes have been considered in beam simulations:

- Longitudinal distribution: Flat-top. Transverse distribution: radial homogeneous
- Uniformly filled 3D ellipsoidal distribution

Fixed parameters during emittance optimization

- Bunch charges: 20 pC ~ 2 nC,
- \succ Electrons thermal kinetic energy at the cathode (0.55 eV),
- ➢ Gun gradient: 59.8 MV/m corresponding to Pz~6.7 MeV/c beam momentum after the gun
- CDS booster starting position: 2.73 m
- CDS booster gradient: 17.6 MV/m corresponding to Pz~22 MeV/c final beam momentum
- > Reference point: EMSY1 (Z=5.125 m) \rightarrow best emittance for 2 profiles with the same bunch length

The following parameters were optimized in the simulations:

- Rms laser beam size,
- Gun Lunching phase,
- Solenoid current

Results: Laser Longitudinal and transverse distribution:

0.5 -1 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 x (mm)

Results for 2 nC

Opt \rightarrow 3 parameters are changing simultaneously Tol \rightarrow 2 parameters fixed and only one changing

Results for 1 nC

Emittance, mm mrad

Emittance, mm mrad

2.0 2.0 1.4 • Opt OPT Opt Tol • Tol TOL • • 1.8 1.8 1.2 1.6 1.6 Emittance, mm mrad 80 Emittance, mm mrad 1.4 1.2 1.0 1.0 0.8 0.8 0.6 0.6 0.6 375 380 385 390 395 -10 -5 5 10 0.35 0.45 0.50 0.55 0.60 0.65 0 0.40 Gun launching phase w.r.t. MMMG phase, deg Main solenoid current, A Rms Laser beam size on the cathode, mm 3D Ellipsoidal laser Opt. emittance 0.4056 2.0 1.0 2.0 Opt Tol • OPT ٠ Opt • 1.8 TOL . 0.9 1.8 • Tol 1.6 1.6 8.0 8 Emittance, mm mrad 1.4 1.4 E^{0.7} 1.2 1.2 ^{6.0} 6.0 1.0 1.0 0.8 0.8 0.6 0.6 0.4 0.4 0.4 0.3 -10 0.35 -5 0 5 10 0.40 0.45 0.50 0.55 0.60 0.65 0.70 375 380 385 390 395 400 Gun launching phase w.r.t. MMMG phase, deg Rms Laser beam size on the cathode, mm Main solenoid current, A

flat-top laser

Results for 500 pC

flat-top laser

Results for 250 pC

flat-top laser

Opt. emittance 0.3286

3D Ellipsoidal laser

Results for 100 pC

flat-top laser

Results for 20 pC

flat-top laser

Opt. emittance 0.0634

3D Ellipsoidal laser

General conclusions

General conclusions

Summery & future plan

Emittance Vs. Charge 1.2 1 Flat top 3D ellips. Charge nC mm mrad Reduction mm mrad Emittance, mm mrad 0.8 ??? ???? ???? 4 2 1.0089 0.6159 39% 0.6 0.61455 0.40558 1 34% Flat top 0.5 0.42896 0.29735 31% 3D ellips. 0.4 0.25 0.32855 0.21781 34% 0.1 0.19518 0.14154 27% 0.2 0.02 0.063373 0.06107 4% 0 1 2 3 4 5 0 Bunch charge, nC

Using 3D ellipsoidal laser profile leads to:

- a. For charges > 0.25 nC more than 30% reduction in emittance compared to the flat-top case
- b. For charges < 100 pC the emittance reduction is dramatically decrees and reach to 4% only for 20 pC?????

To be done soon:

- 1- Simulate 4 nC and 50 pC to check the tendency.
- 2- Continue the analysis of the electron beam properties at the optimized emittance parameters.
- 3- Write report about the simulation.

Thanks

Introduction

- Motivation: Further improvement of the electron beam quality by reduction of the transverse projected beam emittance.
- Main idea: Optimization of the cathode laser pulse shape in order for to minimize the impact of the space charge on the transverse emittance.

