EXPERIMENTAL FOCUSSING OF THE BEAM FOR SELF MODULATION.

Yves Renier

Experimental focussing of the beam for self modulation PITZ Physics Seminar, 19th of March 2015

Motivation

Experimental Set-up

Beam size measurement Using pre-computed matching EMSY measurement Quad scan measurement

Foil effect

Conclusion

Motivation
 Set-up
 σ meas.
 Foil effect
 Conclusion

Yves Renier | Small beam SM | PPS, 19/03/15 | Page 2/ 21

Self Modulation Needs Small Beam Size

Motivation
 Set-up
 σ meas.
 Foil effect
 Conclusion

Figure 1: Beam density for different incoming beam size (Simulations from G. Pathak)

Yves Renier | Small beam SM | PPS, 19/03/15 | Page 3/ 21

Matching solution were found

Motivation
 Set-up
 σ meas.
 Foil effect
 Conclusion

Figure 2: Beam size at the plasma entrance function of scattering for different matching conditions

Yves Renier | Small beam SM | PPS, 19/03/15 | Page 4/ 2

Hard to Measure with the Plasma-cell in

Motivation
 Set-up
 σ meas.
 Foil effect
 Conclusion

Difficulties

- > EMSY1 cannot be used to measure Twiss.
- > Only 1 screen between CDS and plasma.
- > Strong focussing needed ⇒ HIGH1.SCR1 out of phase from plasma entrance.

Yves Renier | Small beam SM | PPS, 19/03/15 | Page 5/ 2

Motivation

Experimental Set-up

Beam size measurement Using pre-computed matching EMSY measurement Quad scan measurement

Foil effect

Conclusion

Measure small beam size at plasma location

> Once the plasma cell is installed.

Figure 3: beam-line after CDS with plasma cell

Motivation
 Set-up
 σ meas.
 Foil effect
 Conclusion

Yves Renier | Small beam SM | PPS, 19/03/15 | Page 7/ 21

Measure small beam size at plasma location

> 2 weeks ago, HIGH1.SCR2 was installed instead.

Figure 4: beam-line after CDS with HIGH1.SCR2

Motivation
 Set-up
 σ meas.
 Foil effect
 Conclusion

Yves Renier | Small beam SM | PPS, 19/03/15 | Page 8/ 21

Motivation

Experimental Set-up

Beam size measurement Using pre-computed matching EMSY measurement Quad scan measurement

Foil effect

Conclusion

Test Matching from simulation

Settings tried

σ_{match}	K(Q1)	K(Q2)	K(Q3)	K(Q4)
20µ <i>m</i>	31.7549	-53.9421	70.1053	-67.6903
30µ <i>m</i>	43.9011	-61.2260	51.5382	-30.1889
40 μ <i>m</i>	-47.6223	50.6120	33.8521	-71.1830
60µ <i>m</i>	51.1921	-62.6109	14.9923	20.0438
80µ <i>m</i>	51.5901	-62.9060	14.4936	21.4218
100µ <i>m</i>	51.9486	-63.2014	14.1735	22.7946

Motivation
 Set-up
 σ meas.
 Foil effect
 Conclusion

Remark

- > Matching with MAD from Twiss obtain with Astra (gun \rightarrow CDS end).
- > Solenoid optimised experimentally to get focalized beam at HIGH.SCR2.

Results

$\sigma_{match}[\mu m]$	$\sigma_{meas}[\mu m]$	I _{solenoid} [A]
20	550	387
30	500	387
40	100	405
60	500	388
80	470	388
100	450	388

Motivation
 Set-up
 σ meas.
 Foil effect
 Conclusion

Yves Renier | Small beam SM | PPS, 19/03/15 | Page 11/ 21

Remarks

> All but 40μ m matching : larger σ than expected. Also, $I_{solenoid}$ different from other cases and simulation ($I_{simu} = 364$ A) ? Motivation
 Set-up
 σ meas.
 Foil effect
 Conclusion

Yves Renier | Small beam SM | PPS, 19/03/15 | Page 12/21

Remarks

> All but 40μ m matching : larger σ than expected. > 40μ m matching : very different solution.

Figure 5: 20µm

Figure 6: 60μ m

Yves Renier | Small beam SM | PPS, 19/03/15 | Page 12/21

2 Set-up 3 σ meas. 4 Foil effect 5 Conclusion

Remarks

- > All but 40 μ m matching : larger σ than expected.
- > 40 μ m matching : very different solution.
- > Twiss at the end of the booster different from simulation ?

Twiss measurement

tried methods:

> EMSY measurement (Not when plasma cell in).

Motivation
 Set-up
 σ meas.
 Foil effect
 Conclusion

Yves Renier | Small beam SM | PPS, 19/03/15 | Page 13/ 21

Twiss measurement

tried methods:

- > EMSY measurement (Not when plasma cell in).
- > Quad scan.

sigmax

results from EMSY measurement

at EMSY1

-4.24

15.3

Х

2.12

39.7

1 Motivation
2 Set-up
4 Foil effect
5 Conclusion

Remark

plane

 α [1]

 β [m]

> Wrong slit used for X, Horizontal meas. not valid.

CDS exit (bp)

-5.07

21.6

 "CDS exit (bp)" number from back-propagation with MAD.

х

-10.6

52.9

> still number from X are much closer to simulation?

CDS exit (sim.)

-12.3

51.02

Х

-12.3

51.02

Quad scan

Motivation
 Set-up
 σ meas.
 Foil effect
 Conclusion

Figure 7: HIGH.Q3 & HIGH.Q4 scan

Remarks

- > Horizontal scan looks very bad (resol ? beam hitting beam-pipe?).
- > Vertical scan limited by screen resolution.

Yves Renier | Small beam SM | PPS, 19/03/15 | Page 15/ 21

Motivation

Experimental Set-up

Beam size measurement Using pre-computed matching EMSY measurement Quad scan measurement

Foil effect

Conclusion

Motivation
 Set-up
 σ meas.
 Foil effect
 Conclusion

Yves Renier | Small beam SM | PPS, 19/03/15 | Page 16/ 21

Scattering with $2\mu m$ foil

$$\sigma_{xp \text{ foil}} = \frac{\sqrt{\sigma_{scat}^2 - \sigma_{no \ scat}^2}}{L(\text{foil} \rightarrow \text{plasma})} \tag{1}$$

Motivation
 Set-up
 σ meas.
 Foil effect
 Conclusion

Result

 $\sigma_{\it xp\ foil} = 0.393 {
m mrad}$ $\sigma_{\it yp\ foil} = 0.448 {
m mrad}$

Motivation

Experimental Set-up

Beam size measurement Using pre-computed matching EMSY measurement Quad scan measurement

Foil effect

Conclusion

Conclusion and prospects

Conclusions

- > Settings for 100μ m beam found.
- > Quad scan cannot measure Twiss (screen resol.).
- > Good EMSYX measurements with the settings used for $100\mu m$ would be nice.
- > 0.1mrad scattering found for 2μ m foil ($\simeq 10\mu$ m increase of σ)

Prospects

- > Why X quad scan look so bad ?
- > Reproduce Y quad scan with EMSY meas. Twiss.
- > 100 μ m too large? Try matching with meas. Twiss.

1 Motivation 2 Set-up 3 σ meas. 4 Foil effect 5 Conclusion

EMSYX

Backup Slides

EMSYY

Backup Slides

