Dark current based resonance temperature measurement

Grygorii Vashchenko PITZ physics seminar Zeuthen, 20.11.2014

Motivation

Difference in determination of resonance temperature basing on reflected power spectra slopes from 2x5MW and 10MW couplers.

Dark current is a direct image of the power in the gun within the RF pulse length

Gun is set to 200 us RF pulse length

Peak power is 7.8 MW around the resonance

Measurement flow, first measurement

Single shot dark current was measured for different gun temperatures

Temperature, deg C

Resonance at 72.1-72.15 deg C

Measurement flow, summary of first measurement

Corrected slopes for second measurement

First measurement

Measurement flow, second measurement

Second measurement, corrected RF slopes

Measurement flow, second measurement

Second measurement, corrected RF slopes

٦.							Ť								1
1							+								
							+								
1							+								
							1								
- 1							\bot								
1															
- 1							+								•
							+								•
\cdot							+								•
							+								
							+								
							\perp								
							\perp								
							Т								
• •							+·								•
	- \						+							Ł	•
							+								
							+			÷					
								1							

Photo Inject Test Facili

Grygorii Vashchenko | PITZ physics seminar | 20.11.2014 | Seite 10

Measurement flow, summary of second measurement

Summary

- Second measurement with corrected RF slopes seems to be not reliable as correction has introduced some unexpected effects. Possible reason is to high power and consequently klystron working at saturation. Solution: repeat measurement with reduced peak power where RF correction works better.
- P2P DC measurement is not relevant for studies of resonant temperature. Integral over the DC signal has to be measured*.
- Statistical measurement is required.
- Measurements have to be repeated with uTCA system which seems to be more stable and reliable (pulse flatness looks better).

* Some information can be extracted from the measured data, see next slide

Dirty estimation of resonance temperature based on integral dark current

PITZ Photo Injector

First measurement

Dirty estimation of resonance temperature based on integral dark current

Grygorii Vashchenko | PITZ physics seminar | 20.11.2014 | Seite 14