Simulations of the gun frequency shift for different cathode spring parameters.

Cathode spring conductivity investigation

Gun frequency shift vs. number of spring leafs

lgor lsaev PPS, 20.02.2014

Model for simulations

- 1.6 cell gun cavity with port at the coaxial part of coupler
- YZ and XZ plane symmetry
- Old cathode vicinity design, material: copper
- Molybdenum plug
- Spacer between cathode vicinity and cathode plug with adjustable conductivity

Results of simulations

- PITZ Photo injector Test Facility
- RF field simulations where done for different 'Cathode spring spacer' conductivity (from 0 to 10⁸ S/m, for Cu is 5.8*10⁷ S/m, for <u>BeCu</u> is <u>1.218*10⁷</u> S/m)
- Solver for simulations: F-solver (frequency domain)
- Measurement output S_{11} parameter vs frequency.
- Processing of the results: Minimal values of curves taken to make dependences of Frequency and S₁₁ vs conductivity

Results of simulations

Conductivity [S/m]

Results of simulations with shifted cathode to -1mm

Shift of the cathode to -1mm gives frequency shift and higher fields in the cathode spring spacer area -> higher dependency of the frequency shift on conductivity.

According to simulations if BeCu spring would change conductivity from 1.2*10⁷ S/m to 5.8*10⁷ S/m (Cu conductivity) it will make <u>0.07</u> deg difference in the wall resonance temperature

Igor Isaev | PPS| 13.02.2014 | Seite 5

Model for different number of spring leafs

Geometry parameter	Value, mm
Cavity radius	90
Cavity length	70
Cathode vicinity radius	10
Cathode radius	8
Coaxial tube length (Cathode part)	50

Frequency of initial model: 1274.95 MHz

Results of different number of spring leafs simulations

Frequency (Mode 1)

Conclusion:

Frequency of the main mode (TM_{010}) drops down within decreasing number of cathode spring leafs.

