Emittance Growth in the matching section

PPS 30/01/2014 G. Kourkafas

Intro

 Transverse tomography measurements require specific twiss parameters at PST \rightarrow matching section itz2_emsy1_to_pstscr2 MAD-X 5.00.07 22/10/13 18.03.14 18. βy β. 16. 14. 12. 10. 8. 6. 4. 2. 0.0 2. Ś. 5. 0.08. 6 7 s (m)

Intro

- Transverse tomography measurements require specific twiss parameters at PST → matching section
- Aim of study: use ASTRA to calculate the emittance growth induced by different matching solutions (provided by MAD) of the same input beam at EMSY1 + observe correlation with phase advance

Intro

- Transverse tomography measurements require specific twiss parameters at PST → matching section
- Aim of study: use ASTRA to calculate the emittance growth induced by different matching solutions (provided by MAD) of the same input beam at EMSY1 + observe correlation with phase advance
- Input beams (Charge, emit @ EMSY 1):
 - 1. 1nC, 1.400mm*mrad (375A , 0.435mm, alpha>0)
 - 2. 1nC, 1.152mm*mrad (378A , 0.360mm, alpha<0)
 - 3. 100pC

Quad strengths of each matching solution for case 1

Quad Gradients	1a [T/m]	1b [T/m]	1c [T/m]
q3	-6.145	6.899	-7.728
q4	6.040	-6.370	7.343
q5	-3.695	-3.805	-4.073
q6	3.671	4.042	4.192
qm1	0.273	-1.730	-1.749
qm2	0.539	1.235	4.504
qm3	-3.657	-3.481	-6.051

Point 1a 1nC, 1.400mm*mrad @ EMSY1

Point 1b 1nC, 1.400mm*mrad @ EMSY1

Point 1c 1nC, 1.400mm*mrad @ EMSY1

Comparison of sigmas for case 1

Point 2a 1nC, 1.152mm*mrad @ EMSY1

Point 2b 1nC, 1.152mm*mrad @ EMSY1

Point 3a 100pC, 0.247mm*mrad @ EMSY1

Point 3b 100pC, 0.247mm*mrad @ EMSY1

Conclusions(?) - Discussion

- Smaller emittance increase observed with bigger phase advance == stronger focusing
- Positive alpha is better ->? bigger spot size during measurements
- ... no other apparent correlation of beta and alpha with the emittance increase and the matching...