RF Interlock Event Losses

Marek Penno
2014-01-20

Problem

* Interlock event data is lost with a certain
probability

* When an RF event happens, it might happen
that the real cause is unknown due to the
event data loss

* Thats bad... physic’s unable to determine real
reason of RF event

Possible causes

 Hardware problem?
* Firmware problem?
e Software problem?

Possible causes

« Hardware preblem

— Event whouldn‘t have been detected

* Firmware problem

* Events lost because input pulses to short for readout but
long enought for logic?

e Capture logic for events not working correctly?

e Software problem?

Firmware Signal Processing

0 Y
Glitch Input
Catcher Filter
Process ol . Interlock Interlock Process
® FPulse o | . .
Input Stretcher i Masking Logic Output
for pulses 1000ms
below 1us
- @ <« v

* Chain reaction time
— for fast Signals (Light 10): 0.25us
— for slow Signals (2us)

Firmware Readout Principle

AND

0™
T UJ— In Out
11 X

Machine C.Iock Event

—F—Clock—e—

Register

In out to CPU Readout

to CPU IRQ

* Tested and verified design

Possible causes

« Hardware preblem
« Lrmwareproblem
e Software problem

— Sender problem?
— Receiver problem?

Network Protocol Versions

* Protocol Vers.1 (Karen)
— UDP based, fixed format

— Event data summed up to 1 sec.
— Used at RF1/RF2, Interlock Rev. 3

* Protocol Vers.2 (Stefan Weisse)
— Namely ,,Network Queue”
— UDP based, loss detection, flexible extensible format
— Event data summed up to 1 sec.
— Used at GUN interlock, Interlock Rev. 3

Software Readout Principle

IRQ function

e Called at every machine clock
® Reads out hardware data

® Tags data with event number
e Writes data into event queue

® Optimized for speed (readout time <20T
cpu clock cycles = 0.04% deadtime)

DAQ Listener Protocol Ver.1

* Reads data from queue

e Collects N events and sums them up into
1sec. Data

* Sends UDP packet to control system

Sender problem?

e Datais not send or is lost on the network

* Using a test receiver, that records the
difference between the event numbers

* Event number should count up with a
constant delta (= reprate)

Sender problem?

Recenved Packets / Samples

 Test over 1000 seconds
e constant delta =10

Receiver problem?

* Testing receiver with test pattern generator

* Sending test pattern, alternating bits with
periodic ‘holes’

* Visual check for “jumps” in pattern

Discovering ,gaps” in the pattern
Probability: ~ 1.8% (14 — 15 out of ~840 events)

interlock flags (OK = Null; Errors ar ONLY: . 23)] PITZ.I. JCK/KLYS/KLYS_1/5D0.PL.0.2

enp Klys Body water In e
ens K1y cantector warer aut .. 2z JULOL L
ens wtvs contector water 1n ... v JULIOUL 0L LA LA A G G
ens sotenota 1.3 vaterout .. 20 LI LA OO o i O At
eap Klys Tank 011 L 00000 0 i
A L A I i i A e

L O R

L 000 0 A T

| LA AT A A A At AT A A S A i

A AT O i o S A VA A O

N AT G MO T A O A G A A I A i

I A A G A T AT AT A R G - A |
A A
L

- AL A .0 At ARG A

Tow adaption Network N AT 0 Y AR G PO A MG AT VAT A
Tow Colector T i) A i O
L0 0 0 0000 0 s

L 0 000 T 1 0 i

[0 A GRS I I O o . A

0 10 090 900 AR

LI A O T . A A A

I A A

Il IIIIIIIIIIII UL R IIIIIIIII IIIIIIIII IIIIIIIIIIIIIIIII L AR WA IIIIIIIII IIIIIIIII
i R s REH 3 i EE PRI ARkt W K 0k S K S I A il :

4
1

0:25.41
7.11.13

PITZ interlock bit history

[interlock flags { OK =

PITZ.I_LOCK/KLYS/KLYS_1/SDO.PL.0.23
1
1

Klys Body Water In
Klys Collector Water Out ..
Klys Collector Water In ...
Solenoid 1..3 Water Out ...
Klys Tank 01l
Trafo Tank wWater Out
Trafo Tank 0Oil
used

=0

ﬂﬁﬂa

%ﬂq

-

-Jqqq

used
used
7 Dummy Load 2
w Dummy Load 1

o5

h

v Adaption Network
w Collector In (HH)»
x Preamp
W Mod
Solenoid 1..3
Klys Body
Klys Collector
Trafo Tank

2y

!qqq

=
.9:7:.“.
:

=

e When a ,,Jump” 1aen the last event data is
repeated

— Conclusion: Data was not updated in time

— |ldea: caused by internal periodic update method in
the DOOCS server, which is not called perfectly
periodically but with some jitter

Receiver problem?

Looking at the source code...

DOOCS Server receives data in thread A and writes data into buffer at 1
sec period

DOOCS update function is periodically called by thread B at 1 sec. period
and reads data from buffer

Could work if updates periods are perfectly constant, but update periods
do have jitter because of:

— Network delays (few ms)
— Operation System scheduler adds jitter to sleep function calls (>10ms)

. Thread B
Receiver Thread A Event Data Buffer :
: | ; : | “ DOOCS Update function
Receives data every sec Size = 1 Data Record / .
Called 1 sec periodically

Solutions?

* Fix server?
— Using server-locks for updating inside of udp thread

— A bit change of concept of the server... coding style... |
whould like to reduce types of servers

* Change to Protocol Ver.2?

* Change to Interlock 4 Protocol?
— Needs some software work on Interlock 3
— Long term solution

Interlock 4 protocol

e Basic DOOCS server exists already

* Features:
— TCP based communication, ZMQ extension in mind
— Fully generic, adapts to any interlock configuration
— Configurable signal arrangement at control system view
— Update data by using server locks
— Processes data on machine clock level
— Transfers analog data and plots (if available)

— Transfers more metadata (masks, filters, min/max
thresholds, signal names)

— Support for full event history (advanced archiver)

