RF Interlock Event Losses

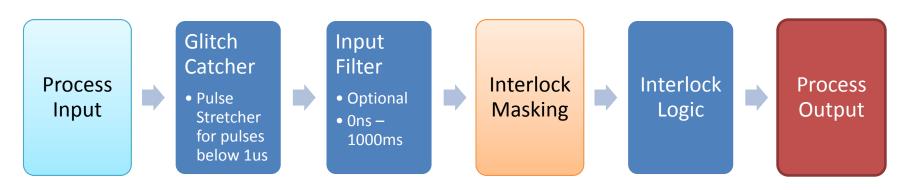
Marek Penno 2014-01-20

Problem

- Interlock event data is lost with a certain probability
- When an RF event happens, it might happen that the real cause is unknown due to the event data loss
- Thats bad... physic's unable to determine real reason of RF event

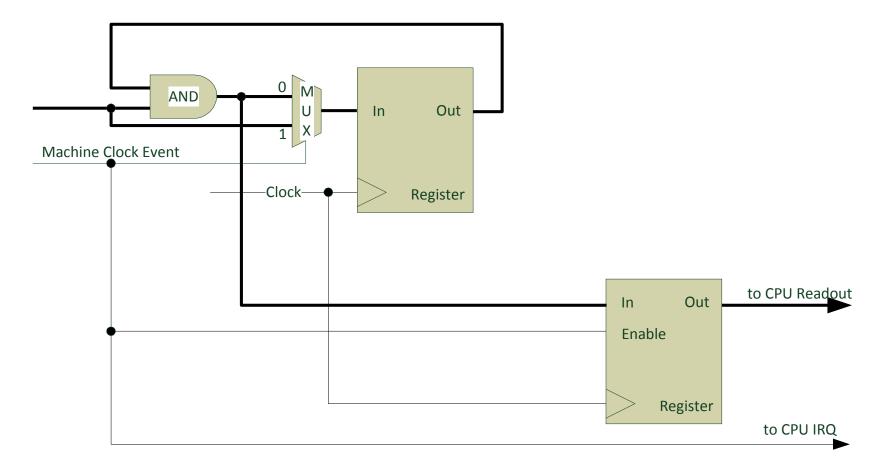
Possible causes

- Hardware problem?
- Firmware problem?
- Software problem?


Possible causes

- Hardware problem
 - Event whouldn't have been detected

• Firmware problem


- Events lost because input pulses to short for readout but long enought for logic?
- Capture logic for events not working correctly?
- Software problem?

Firmware Signal Processing

- Chain reaction time
 - for fast Signals (Light IO): 0.25us
 - for slow Signals (2us)

Firmware Readout Principle

Tested and verified design

Possible causes

- Hardware problem
- Firmware problem
- Software problem
 - Sender problem?
 - Receiver problem?

Network Protocol Versions

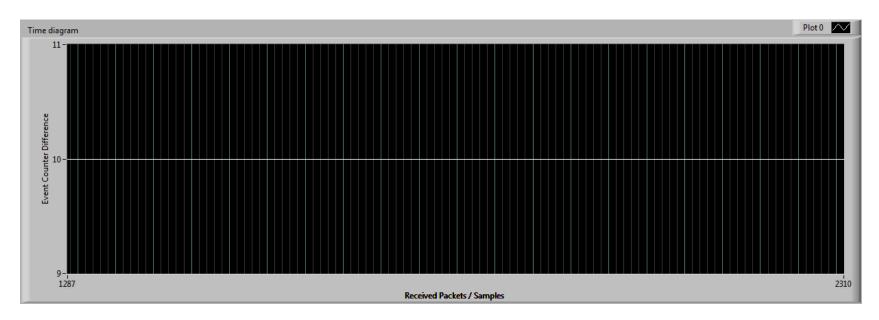
• Protocol Vers.1 (Karen)

- UDP based, fixed format
- Event data summed up to 1 sec.
- Used at RF1/RF2, Interlock Rev. 3
- Protocol Vers.2 (Stefan Weisse)
 - Namely "Network Queue"
 - UDP based, loss detection, flexible extensible format
 - Event data summed up to 1 sec.
 - Used at GUN interlock, Interlock Rev. 3

Software Readout Principle

IRQ function

- Called at every machine clock
- Reads out hardware data
- Tags data with event number
- Writes data into event queue
- Optimized for speed (readout time <20T cpu clock cycles = 0.04% deadtime)

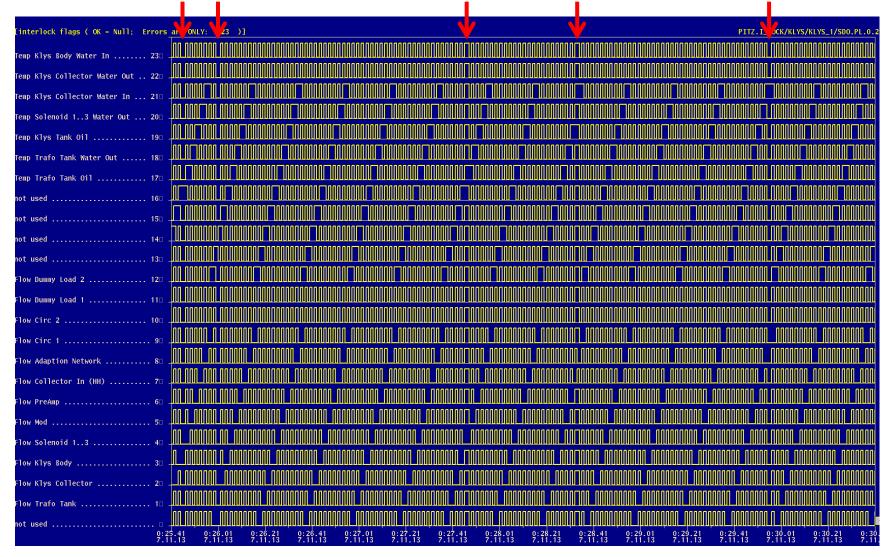

DAQ Listener Protocol Ver.1

- Reads data from queue
- Collects N events and sums them up into 1sec. Data
- Sends UDP packet to control system

Sender problem?

- Data is not send or is lost on the network
- Using a test receiver, that records the difference between the event numbers
- Event number should count up with a constant delta (= reprate)

Sender problem?



- Test over 1000 seconds
- constant delta = 10

Receiver problem?

- Testing receiver with test pattern generator
- Sending test pattern, alternating bits with periodic 'holes'
- Visual check for "jumps" in pattern

- Discovering "gaps" in the pattern
- Probability: ~ 1.8% (14 15 out of ~840 events)

PITZ interlock bit history

<pre>[interlock flags (OK = Null; Er</pre>	rors are ONLY: 1-23	3)] 🔻	PITZ.I_I	OCK/KLYS/KLYS_1/S	DO.PL.0.23
Temp Klys Body Water In					
Temp Klys Collector Water Out					
Temp Klys Collector Water In					πππππ
Temp Solenoid 13 Water Out				າມບານການການ	
Temp Klys Tank Oil					
Temp Trafo Tank Water Out					
Temp Trafo Tank Oil					
not used					
not used					
not used					
not used					
		<u> </u>			
Flow Dummy Load 1		սողողը դղղղղող	<u> </u>		
Flow Circ 2		սողողը դղղղղղ	<u> </u>	որողողողող	
Flow Circ 1		<u> </u>	<u> </u>	<u>n_nnnnnnn_n</u>	
Flow Adaption Network		սողողը սողողըն	<u>nn_n_nnnnnnn</u>	<u></u>	
Flow Collector In (HH)		<u> </u>	<u>n_nn_nnnnnn_</u>	<u> </u>	
Flow PreAmp		<u> </u>	<u></u>	<u> </u>	
Flow Mod			<u> </u>	<u> </u>	
Flow Solenoid 13		<u> </u>	<u> </u>	<u> </u>	
Flow Klys Body		<u>IA ANAN ANAN AN</u>	<u> </u>	<u> </u>	
Flow Klys Collector					
Flow Trafo Tank		<u> </u>	<u> </u>	<u> </u>	
not used		huuuuuu uuuuu	nnnn nnnnnn		
	23:57.18 23:5		23:58.18	23:58.38	23:59.08
	6.11.13 6.11	1.13 6.11.13	6.11.13	6.11.13	6.11.13

- When a "Jump" happen the last event data is repeated
 - Conclusion: Data was not updated in time
 - Idea: caused by internal periodic update method in the DOOCS server , which is not called perfectly periodically but with some jitter

Receiver problem?

- Looking at the source code...
- DOOCS Server receives data in thread A and writes data into buffer at 1 sec period
- DOOCS update function is periodically called by thread B at 1 sec. period and reads data from buffer
- Could work if updates periods are perfectly constant, but update periods do have jitter because of:
 - Network delays (few ms)
 - Operation System scheduler adds jitter to sleep function calls (>10ms)

Solutions?

- Fix server?
 - Using server-locks for updating inside of udp thread
 - A bit change of concept of the server... coding style... I whould like to reduce types of servers
- Change to Protocol Ver.2?
- Change to Interlock 4 Protocol?
 - Needs some software work on Interlock 3
 - Long term solution

Interlock 4 protocol

- Basic DOOCS server exists already
- Features:
 - TCP based communication, ZMQ extension in mind
 - Fully generic, adapts to any interlock configuration
 - Configurable signal arrangement at control system view
 - Update data by using server locks
 - Processes data on machine clock level
 - Transfers analog data and plots (if available)
 - Transfers more metadata (masks, filters, min/max thresholds, signal names)
 - Support for full event history (advanced archiver)