
RF Interlock Event Losses

Marek Penno

2014-01-20

Problem

• Interlock event data is lost with a certain
probability

• When an RF event happens, it might happen
that the real cause is unknown due to the
event data loss

• Thats bad… physic‘s unable to determine real
reason of RF event

Possible causes

• Hardware problem?

• Firmware problem?

• Software problem?

Possible causes

• Hardware problem

– Event whouldn‘t have been detected

• Firmware problem
• Events lost because input pulses to short for readout but

long enought for logic?

• Capture logic for events not working correctly?

• Software problem?

Firmware Signal Processing

Process
Input

Process
Input

Glitch
Catcher

• Pulse
Stretcher
for pulses
below 1us

Input
Filter

• Optional

• 0ns –
1000ms

Interlock
Masking
Interlock
Masking

Interlock
Logic

Process
Output

• Chain reaction time

– for fast Signals (Light IO): 0.25us

– for slow Signals (2us)

Firmware Readout Principle

RegisterClock

In Out
AND

1

0 M
U
X

Machine Clock Event

Register

In Out

Enable

to CPU Readout

to CPU IRQ

• Tested and verified design

Possible causes

• Hardware problem

• Firmware problem

• Software problem

– Sender problem?

– Receiver problem?

Network Protocol Versions

• Protocol Vers.1 (Karen)

– UDP based, fixed format

– Event data summed up to 1 sec.

– Used at RF1/RF2, Interlock Rev. 3

• Protocol Vers.2 (Stefan Weisse)

– Namely „Network Queue“

– UDP based, loss detection, flexible extensible format

– Event data summed up to 1 sec.

– Used at GUN interlock, Interlock Rev. 3

Software Readout Principle

IRQ function

• Called at every machine clock

• Reads out hardware data

• Tags data with event number

• Writes data into event queue

• Optimized for speed (readout time <20T
cpu clock cycles = 0.04% deadtime)

DAQ Listener Protocol Ver.1

• Reads data from queue

• Collects N events and sums them up into
1sec. Data

• Sends UDP packet to control system

Sender problem?

• Data is not send or is lost on the network

• Using a test receiver, that records the
difference between the event numbers

• Event number should count up with a
constant delta (= reprate)

Sender problem?

• Test over 1000 seconds

• constant delta = 10

Receiver problem?

• Testing receiver with test pattern generator

• Sending test pattern, alternating bits with
periodic ‘holes’

• Visual check for “jumps” in pattern

• Discovering „gaps“ in the pattern
• Probability: ~ 1.8% (14 – 15 out of ~840 events)

• When a „Jump“ happen the last event data is
repeated
– Conclusion: Data was not updated in time
– Idea: caused by internal periodic update method in

the DOOCS server , which is not called perfectly
periodically but with some jitter

Receiver problem?

• Looking at the source code…
• DOOCS Server receives data in thread A and writes data into buffer at 1

sec period
• DOOCS update function is periodically called by thread B at 1 sec. period

and reads data from buffer
• Could work if updates periods are perfectly constant, but update periods

do have jitter because of:
– Network delays (few ms)
– Operation System scheduler adds jitter to sleep function calls (>10ms)

Receiver Thread A
Receives data every sec

Event Data Buffer
Size = 1 Data Record

Thread B
DOOCS Update function
Called 1 sec periodically

1 sec 1 sec

Solutions?

• Fix server?

– Using server-locks for updating inside of udp thread

– A bit change of concept of the server… coding style… I
whould like to reduce types of servers

• Change to Protocol Ver.2?

• Change to Interlock 4 Protocol?

– Needs some software work on Interlock 3

– Long term solution

Interlock 4 protocol

• Basic DOOCS server exists already

• Features:
– TCP based communication, ZMQ extension in mind

– Fully generic, adapts to any interlock configuration

– Configurable signal arrangement at control system view

– Update data by using server locks

– Processes data on machine clock level

– Transfers analog data and plots (if available)

– Transfers more metadata (masks, filters, min/max
thresholds, signal names)

– Support for full event history (advanced archiver)

