Study of Space Charge Effect in Emittance Measurement by Slit-scan Technique

Prach Boonpornprasert

PITZ Physics Seminar

17.12.2013

Advisor: Grygorii Vaschenko

Outline

Introduction

- Reviews of Transverse Emittance Measurement by Single Slit-scan Technique (SST)
- Simulation of SST
- > Results
- Summary & Outlook

Introduction

Objectives of This Work

- Reviews the methodical approach of SST
- Study of space charge effect in SST

Reviews of SST (2)

Reviews of SST (3)

Simulation of SST: Working Process

Finally, We will have 4 plots of reconstructed trace spaces:

10µm SPC OFF, 10µm SPC ON, 50µm SPC OFF and 50µm SPC ON

Prach Boonpornprasert | Study of Space Charge Effect in Slit Scan Technique | PITZ Physics Seminar | 17.12.2013 | Page 7

Simulation of SST: Electron Beam Profiles at H1.Scr1

Input Parameters for ASTRA

N _{particles}	10M		
bunch charge	1	nC	
laser spot size	0.4	mm	
I _{main solenoid}	386	А	
E _{gun,max}	60.5	MV/m	
Ф _{gun}	-1.0	deg	
E _{booster,max}	17.5	MV/m	

Beam Parameters at H1.Scr1

σ _{x,rms}	0.575	mm	
σ _{y,rms}	0.575	mm	
٤ _{x,n}	0.617	mm.mrad	
ε _{y,n}	0.617	mm.mrad	
P _{z,avg}	21.625	MeV/c	

Simulation of SST: Building Beamlet Distribution Files

Scan range	-1.50 to 1.50 mm		
Slit size	10 μm 50 μn		
N _{step}	81	51	
Step size	37.5 µm	60 µm	

Slit parameters

slit size

x_{center, i} = x_{left, i} + (0.5*slit size)

X_{right, i}

X_{left, i}

Prach Boonpornprasert | Study of Space Charge Effect in Slit Scan Technique | PITZ Physics Seminar | 17.12.2013 | Page 9

Results: Slit Size of 10 µm

Prach Boonpornprasert | Study of Space Charge Effect in Slit Scan Technique | PITZ Physics Seminar | 17.12.2013 | Page 10

ε_{x,n,reference} = 0.617 mm.mrad

Results: Slit Size of 50 µm

 εx,n,reference
 = 0.617 mm.mrad

 Prach Boonpornprasert
 | Study of Space Charge Effect in Slit Scan Technique
 | PITZ Physics Seminar | 17.12.2013
 | Page 11

Results: Beamlet Size at H1.Scr4

Results: Summary Table

Parameter	Beam Dist. File	10 μm SPC OFF	10 μm SPC ON	50 μm SPC OFF	50 μm SPC ON
Q (nC)	1	0.266	0.266	0.831	0.831
ΔQ / Q _{ref}		-73.4%	-73.4%	-16.9%	-16.9%
σ _{x,real beam} (mm)	0.5750				
σ _{x,scan} (mm)		0.5207	0.5207	0.5209	0.5209
scale factor		1.0109	1.0109	1.0104	1.0104
ε _{x,n,scaled} (mm.mrad)	0.617	0.6066	0.6117	0.6443	0.6688
Δε / ε _{x,n,ref}		-1.69%	-0.86%	+4.42%	+8.40%
Δε / ε _{x,n,SPC OFF}			+0.84%		+3.80%
σ _{x,bl,mid} (mm)		0.0905	0.0913	0.0930	0.0967
$\Delta \sigma$ / $\sigma_{x,bl,mid,SPC OFF}$			+0.88%		+3.98%

Summary & Outlook

Summary

- > Reviews of SST was done
- Space charge effect still plays significant role in SST for slit size of 50µm.
- We lost most of bunch charge when using slit size of 10µm. However, We could scan more precisely and got more accurate emittance.
- > When comparison the results from SPC ON to SPC OFF
 - For slit size of 10µm, $\epsilon_{x,n}$ and $\sigma_{x,bl,mid}$ increase ~1%
 - For slit size of 50µm, $\epsilon_{x,n}$ and $\sigma_{x,\text{bl,mid}}$ increase ~4%

<u>Outlook</u>

- Include the slit thickness into ASTRA simulation.
- Perform study with bunch charge of <u>2nC</u>, 250pC, 100pC, and 20pC.

Backup: Comparison of Trace Spaces

Backup: Error of Beamlet Size at H1.Scr4

Backup: Histogram for each case

