
TWatchDog

Introduction

PPS 12.12.2013

TWatchDog: Introduction

TWatchDog purpose:

Manage the Temperature setpoint to to keep the gun overheated and at acceptable reflection during both ramp and steady state.

TWatchDog: User Guide

Launch TWatchDog:

1) Open MATLAB

2) Type otetool twatch

-> Alternatively: go to: doocs/measure/Conditioning/_MatlabScripts run twatchdog_2013.m

Starting & Stopping:

-> Simply press the corresponding button

Switch modes:

TWatchDog: Basic Idea

The "Virtual Operator" Strategy:

- -> Try to "algorithmize" the operator's actions as well as possible.
- -> Based on run experience

Realization:

- -> Monitor essential quantities
- -> Define when (Conditions) and how (Actions) the code should act.

Consequent Advantages & Disadvantages:

- + Minimum inputs, no calibration needed.
- + Deals with any (slow) resonance temperature shift.
- Can not predict and test all possible situations
 - -> Potentially dangerous

TWatchDog: Realization

Important quantities:

- -> Reflection [%%]
- -> Temperature Setpoint [°C]
- -> Temperature Readback [°C]
- -> Auxiliary quantities:

Reflected-Power-Slope Feed forward – logical SP-Pforw RF pulse length [µs]

TWatchDog: Parameters

Independent parameter: MinRefl [%%]

-> Specified by the user

-> Meaning: Kind of a goal (desired) reflection

Other important parameters and dependents:

Other parameters like steps, delays, tolerances etc...

Action 1: Increase/Decrease SP-Temp if and only if the temperature readback is not too far from its setpoint

-> Condition:

- a) Reflection < MinRefl \rightarrow Increase SP-T
- b) Reflection > MaxRefl \rightarrow Decrease SP-T

Action 2: Increase SP-Temp even if the readback is not matching the setpont that well.

-> Condition:

- a) Reflection < CriticalRefl & Slope positive \rightarrow Increase SP-T !
- b) Reflection < CriticalRefl & Slope negative → Increase SP-T !!!

Action 3*: Increase SP-Temp even if the readback is far above the setpoint

-> Condition:

Reflection is above but fairly close to MinRefl but the T-SP is far below the T-RB (there is a formula, details beyond the scope of the lecture) ->

-> means that the current T-SP is very probably too low.

 \rightarrow Increase SP-T to average(T-RB,T-SP)

*This condition is frequently fulfilled when ramping fast.

TWatchDog: Modes

Ramping mode:

-> Used when ramping (changing average power)

-> MaxRefl = MinRefl+35

T-Watchdog _ C X

Static mode:

-> Used for stable run (average power constant)

-> MaxRefl = MinRefl+8

The static mode has two phases:

1) Finding the goal temperature (T-goal):

First it "squeezes" the acceptable reflection interval (by setting MaxRefl = MinRefl +8 (instead of 35)) and then it measures 10 times the T-RB when Reflection is (very) close to the MinRefl.

2) Setting the goal temperature:

Slowly approaching the T-goal. T-goal is kept monitored and eventually the actualized value approached.

-> Automatic recognizing the Ramping & Static modes

-> Implement to SMAC (?)

HAVE FUN!

... but hopefully not too much ;-)

TWatchDog: Condition 3 – The formula

Action 3*: Increase SP-Temp even if the readback is far above the setpoint

-> Condition:

Reflection is above but fairly close to MinRefl but the T-SP is far below the T-RB -> -> means that the current T-SP is very probably too low.

 \rightarrow Increase SP-T to average(T-RB,T-SP)

K2 = 0.8; K1 = 1 + K2*(Trb-Tsp);

Reflection < K1*MinRefl

