Simulations of the booster position at the EXFEL (preliminary)

M.Krasilnikov PPS, 22.11.2013

Motivation

- Simulations of the optimum CDC booster position at PITZ (M. Khojoyan)
- Nominal simulations of the EXFEL photo injector → slightly over-focused beam in front of the ACC1

conditions for the beam \rightarrow e.g. "invariant envelope": the beam should be at a laminar waist at the booster linac entrance (i.e. $\sigma_{x,y} = 0$) and the energy gain in the booster γ'_{boost} should be related to the rms beam size σ_w , the incoming mean beam energy γ and the peak current I_p via the equation [Serafini]:

→ ~34

$$\gamma'_{boost} = \frac{2}{\sigma_w} \sqrt{\frac{I_p}{3I_A\gamma}}$$

This estimation $\rightarrow \sim 19$. ASTRA optimization

Nominal and re-optimized setups

			European XFEL photo injector		
			cylindrical pulses with flattop temporal profiles		
	ACC position →		nominal	optimized (bp)	
, j	rt/FWHM\ft	ps	2/21.5\2	2/21.5\2	
<u>0</u> 0	Trms	ps	6.272	6.272	
3	Transverse duistribution		radial homogeneous		
8	XYrms	mm	0.415	0.468	
	Th. emit.	mm mrad	0.351	0.396	
RF gun	Ecath.	MV/m	60.58		
	Phase	deg	-1.5	-0.87	
	MaxBz	Т	-0.22745	-0.22874	
ACCI	center of the 1st TESLAcav.	m	4.0401	3.499	
	MaxE(1-4)	MV/m	33.5187	31.36	
	MaxE(5-8) MV/m		33.5187		
	Charge	nC	1		
	Ek(after ACC1)	MeV	150.63	146.01	
	Proj. emittance	mm mrad	0.629	0.629	
Electron beam	Th. / proj.	%	56	63	
	<si. emit.=""></si.>	mm mrad	0.550	0.519	
	Rms bunch length	mm	2.128	2.030	
	Peak current	A	44.2	45.9	
	Long. emittance	mm keV	533	446	
	<brightness></brightness>	A/(mm mrad)^2	111	124	

tuned

Nominal and re-optimized (bp) setups

- ACC1 is by -0.54m upstream shifted
- Laser spot size at the cathode is by 13% larger \rightarrow SC density at the cathode is by 21% smaller, therm. emit.(56% \rightarrow 63%)
- Gun phase +1deg → a bit higher emission field
- Booster gradient (1/2 ACC1) is a bit smaller → inv. envelope?
- Solenoid peak field is by 0.6% higher earlier focusing

Nominal and re-optimized (bp) setups

- Beam size: smaller at waste, main focusing by the 1st TESLA cavity, then \rightarrow ~const
- Emittance (projected): stronger reduction in the booster (1st $\frac{1}{2}$ ACC1), then \rightarrow ~const = nominal
- Bunch rms length is by ~5% smaller (reduced longitudinal SC effect)

Nominal and re-optimized (bp) setups

	a .	-	_		1	
	Charge	nC	1			
	Ek(after ACC1)	MeV	150.63	146.01		
	Proj. emittance	mm mrad	0.629	0.629		
	Th. / proj.	%	56	63	➡therm. emit.(56% → 63%)	
B	<si. emit.=""></si.>	mm mrad	0.550	0.519	ightarrow by ~6% smaller! (9% in the cente	
ectron	Rms bunch length	mm	2.128	2.030	➡ 5% shorter!	
The second se	Peak current	А	44.2	45.9	🔷 4% higher!	
	Long. emittance	mm keV	533	446		
	<brightness></brightness>	A/(mm mrad)^2	111	124		

+3rd Harmonic Section (nominal)

+3rd Harmonic Section (nominal and bp)

Space charge effect evaluation

Space charge density
$$SCD \propto \frac{Q}{\sigma_x \sigma_y \sigma_z}$$

Space charge force $SCF \propto \frac{Q}{\gamma^2 \sigma_x \sigma_y \sigma_z}$

Conclusions (preliminary)

- "BP-setup" (shorter length of the downstream drift to ACC1):
 - Same projected emittance as for the nominal case
 - 5% smaller average slice emittance
 - 5% sorter bunch and ~4% higher peak current
 - Higher (by 12%) average brightness
 - − larger (by 13%) laser spot size at the cathode \rightarrow "+" or "-"?
 - − Beam size in ACC1 is \sim const. \rightarrow "+" or "-"?
 - Space charge effect is different
 - ...
- Outlook:
 - Beam matching into 3rd harmonic section
 - Booster phase tuning?
 - More flexible usage of the ACC1?
 - More thorough check of the "invariant envelope" approach (comp. to BD simulations
 - Tolerances and imperfections

- ...