Booster position optimization for flat-top and 3D ellipsoidal laser profiles

- Booster position optimization for 3D ellipsoidal and flat-top laser shapes with fixed beam energy
- Booster position optimization for 3D ellipsoidal and flat-top laser shapes with varied beam energy
- Beam studies for flat-top and 3D ellipsoidal laser shapes with fixed booster position of Z=2.8m
- > Emittance optimization for 3D ellipsoid with fixed booster position of Z=2.9m
- > Emittance optimization for flat-top profile with fixed booster position of Z=2.7m
- Summary

Martin Khojoyan PITZ Physics Seminar 14.11. 2013

PITZ setup used in ASTRA simulations

Setup used in ASTRA simulations

Fixed parameters in ASTRA simulations

- > 0.55 eV average kinetic energy of the photoelectrons
- Gun gradient: 60.58 MV/m (Pz~6.7 MeV/c beam momentum after the gun at max acceleration phase)
- ➤ 200 000 macroparticles
- Bunch charge: 1 nC
- Optimization of transverse emittance at EMSY1 (Z=5.74 m)

Booster position optimization for 3D ellipsoidal and flat-top laser shapes with fixed beam energy

- Booster position optimization for 3D ellipsoidal and flat-top laser shapes with varied beam energy
- Beam studies for flat-top and 3D ellipsoidal laser shapes with fixed booster position of Z=2.8m
- Emittance optimization for 3D ellipsoid with fixed booster position of Z=2.9m
- Emittance optimization for flat-top profile with fixed booster position of Z=2.7m
- Summary

Optimization of the booster position (fixed beam energy)

ASTRA simulation setup: fixed parameters

- > 3D ellipsoidal cathode laser pulse with 6.1 ps rms emission time (initial bunch length)
- > 0.55 eV average kinetic energy of the photoelectrons
- Gun gradient: 60.58 MV/m corresponding to Pz~6.7 MeV/c beam momentum after the gun
- CDS booster gradient: 19.76 MV/m corresponding to Pz~24 MeV/c final beam momentum
- Bunch charge: 1 nC
- > Searching for the best transverse emittance at EMSY1 (Z=5.74 m)

ASTRA simulation setup: varied parameters

- ▶ Laser transverse rms spot size on the cathode \rightarrow [0.35:0.01:0.44] mm
- > Gun phase → [-4:1:-1] deg
- ➢ Initial Z position of CDS booster → [2:0.1:3] m
- ▶ Main solenoid current \rightarrow [385:1:391] A

Z=2.7 m was found to be an optimum

(currently Z=3.07 m)

Best laser rms spot size \rightarrow 0.42 mm Best gun phase \rightarrow phase of max acceleration Best solenoid current \rightarrow 389A

3D ellipsoid: fixed beam energy

Transverse emittance as a function of machine parameters after multi parameter scan.

Optimization of the booster position (fixed beam energy)

ASTRA simulation setup: fixed parameters

- > Laser temporal profile: flat-top with 21.5ps FWHM length and 2ps rise and fall times
- 0.55 eV average kinetic energy of the photoelectrons
- Gun gradient: 60.58 MV/m corresponding to Pz~6.7 MeV/c beam momentum after the gun
- > CDS booster gradient: 19.76 MV/m corresponding to Pz~24 MeV/c final beam momentum
- Bunch charge: 1 nC
- > Searching for the best transverse emittance at EMSY1 (z=5.74 m)

ASTRA simulation setup: varied parameters

- ▶ Laser transverse rms spot size on the cathode \rightarrow [0.39:0.01:0.45] mm
- > Gun phase → [-3:1:1] deg
- ➢ Initial z position of CDS booster → [2.6:0.1:3.2] m
- > Main solenoid current \rightarrow [384:1:390] A

z=2.9 m was found to be an optimum (currently z=3.07 m)

Best laser rms spot size \rightarrow 0.435 mm Best gun phase \rightarrow phase of max acceleration Best solenoid current \rightarrow 387A

Optimization of the booster position (flat-top)

Emittance growth vs. booster position for two cases

PITZ

Z=2.8 m can be a good compromise ...

- Booster position optimization for 3D ellipsoidal and flat-top laser shapes with fixed beam energy
- Booster position optimization for 3D ellipsoidal and flat-top laser shapes with varied beam energy
- Beam studies for flat-top and 3D ellipsoidal laser shapes with fixed booster position of Z=2.8m
- Emittance optimization for 3D ellipsoid with fixed booster position of Z=2.9m
- Emittance optimization for flat-top profile with fixed booster position of Z=2.7m
- Summary

Optimization of the booster position (varying booster gradient)

ASTRA simulation setup: fixed parameters

- > 3D ellipsoidal cathode laser pulse with 6.1 ps rms emission time (initial bunch length)
- 0.55 eV average kinetic energy of the photoelectrons
- Gun gradient: 60.58 MV/m corresponding to Pz~6.7 MeV/c beam momentum after the gun
- ➢ Gun ASTRA phase fixed to -2 deg !!
- Bunch charge: 1 nC
- > Searching for the best transverse emittance at EMSY1 (Z=5.74 m)

ASTRA simulation setup: varied parameters

- ▶ Laser transverse rms spot size on the cathode \rightarrow [0.34:0.02:0.5] mm
- ➢ Booster gradient → [8:2:22] MV/m
- ➢ Initial Z position of CDS booster → [2.4:0.1:2.9] m
- ▶ Main solenoid current \rightarrow [380:2:394] A

Best laser rms spot size \rightarrow 0.4 mm Best initial booster position \rightarrow 2.7 m Best booster gradient \rightarrow 14 MV/m Best solenoid current \rightarrow 388A

3D ellipsoid: varied booster gradient

Optimization of the booster position (varying booster gradient)

ASTRA simulation setup: fixed parameters

- Flat-top cathode laser pulse with 21.5ps FWHM length and 2ps rise and fall times (Trms=6.272 ps)
- 0.55 eV average kinetic energy of the photoelectrons
- Gun gradient: 60.58 MV/m corresponding to Pz~6.7 MeV/c beam momentum after the gun
- Gun ASTRA phase fixed to -1 deg !!
- Bunch charge: 1 nC
- Searching for the best transverse emittance at EMSY1 (Z=5.74 m)

ASTRA simulation setup: varied parameters

- ▶ Laser transverse rms spot size on the cathode \rightarrow [0.36:0.02:0.5] mm
- ➢ Booster gradient → [0:2:22] MV/m
- ➢ Initial Z position of CDS booster → [2.6:0.1:3.2] m
- ▶ Main solenoid current \rightarrow [380:2:390] A

Best laser rms spot size \rightarrow 0.42 mm Best initial booster position \rightarrow 2.9 m Best booster gradient \rightarrow 16 MV/m Best solenoid current \rightarrow 386A

Flat-top: varied booster gradient

PITZ Photo Injector Test Facility

'Optimized' by varying the beam energy !

Z=2.8 m can be a good compromise ...

Conclusion

- > Optimum initial booster position for 3D ellipsoidal laser profile \rightarrow Z=2.7m (consistent)
- > Optimum initial booster position for flat-top laser profile \rightarrow Z=2.9m (consistent)
- Bigger laser spot size at cathode for the case of optimum setups with fixed beam energy (Eb=19.76MV/m) and shifted booster position: flat-top and 3D ellipsoidal laser profiles
- Z=2.8m initial booster position is a good compromise
- Complete emittance optimization for flat-top profile by varying the booster gradient

- Booster position optimization for 3D ellipsoidal and flat-top laser shapes with fixed beam energy
- Booster position optimization for 3D ellipsoidal and flat-top laser shapes with varied beam energy
- Beam studies for flat-top and 3D ellipsoidal laser shapes with fixed booster position of Z=2.8m
- Emittance optimization for 3D ellipsoid with fixed booster position of Z=2.9m
- Emittance optimization for flat-top profile with fixed booster position of Z=2.7m
- Summary

Emittance optimization for the fixed Zboo and Eboo

ASTRA simulation setup: fixed parameters

- > 3D ellipsoidal (Trms=6.1 ps) and flat-top (Trms=6.272 ps) cathode laser pulses
- 0.55 eV average kinetic energy of the photoelectrons
- ➤ Gun gradient: 60.58 MV/m corresponding to Pz~6.7 MeV/c beam momentum after the gun
- Initial booster position fixed to 2.8m !!
- > Booster gradient fixed to 20 MV/m !! (24 MeV final momentum at on-crest phases)
- Bunch charge: 1 nC
- Searching for the best transverse emittance at EMSY1 (Z=5.74 m)

ASTRA simulation setup: varied parameters

- ▶ Laser transverse rms spot size on the cathode \rightarrow [0.35:0.01:0.53] mm
- > RF gun ASTRA phase → [-4:1:1] deg
- > Main solenoid current \rightarrow [380:1:394] A

Emittance optimization: two different laser profiles

Booster Z position 2.8m !!
Booster gradient 20 MV/m !!

 Electron bunch rms length at EMSY1 7% smaller compared to 3D ellipsoidal case

> 0.46 mm optimum laser spot size for flattop case while 0.4 mm for the 3D ellipsoidal

Beam tolerances at Zboo=2.8m: flat-top +3D ellipsoid with same rms bunch length at EMSY1

Same rms bunch length at EMSY1 !

Beam dynamics comparing 4 different cases

Transverse beam properties along beamline: 4 different cases

Beam dynamics comparing 4 different cases

Beam tolerances comparing 2 booster positions for flat-top laser profile

Different rms bunch lengths at EMSY1 !

Beam tolerances comparing 2 booster positions for 3D ellipsoidal laser profile

Different rms bunch lengths at EMSY1 !

Conclusion

Flat-top temporal laser profile:

- Bigger laser spot size required if booster is shifted towards the cathode
- Smaller transverse emittance (slice emittance) and higher peak current for Z=2.8m compared to the current case (current booster position)
- Better tolerances for Z=2.8m compared to the current case

3D ellipsoidal laser profile:

- > ~50A peak current for the case of Z=2.8m !
- Transverse (slice) emittances comparable
- Beam tolerances better compared to the current case

Emittance optimization for flat-top and 3D ellipsoidal laser profiles (Z=2.8m) by varying the booster gradient

- Booster position optimization for 3D ellipsoidal and flat-top laser shapes with fixed beam energy
- Booster position optimization for 3D ellipsoidal and flat-top laser shapes with varied beam energy
- Beam studies for flat-top and 3D ellipsoidal laser shapes with fixed booster position of Z=2.8m
- Emittance optimization for 3D ellipsoid with fixed booster position of Z=2.9m
- Emittance optimization for flat-top profile with fixed booster position of Z=2.7m
- Summary

Emittance optimization for 3D ellipsoid (Z=2.9m)

ASTRA simulation setup: fixed parameters

- > 3D ellipsoidal cathode laser pulse with 6.1 ps rms emission time (initial bunch length)
- 0.55 eV average kinetic energy of the photoelectrons
- > Gun gradient: 60.58 MV/m corresponding to Pz~6.7 MeV/c beam momentum after the gun
- Booster starting position: 2.9m
- Bunch charge: 1 nC
- Searching for the best transverse emittance at EMSY1 (Z=5.74 m)

ASTRA simulation setup: varied parameters

- ▶ Laser transverse rms spot size on the cathode \rightarrow [0.34:0.02:0.46] mm
- > Gun ASTRA phase → [-4:1:0] deg
- ➢ Booster gradient → [6:1:17] MV/m
- ▶ Main solenoid current \rightarrow [384:1:392] A

Best laser rms spot size \rightarrow 0.4 mm Best gun phase \rightarrow -2 deg Best booster gradient \rightarrow 13 MV/m Best solenoid current \rightarrow 389A

Emittance optimization with fixed booster position (Z=2.9m)

Martin Khojoyan | PITZ Physics Seminar | 14.11.2013 | Page 27

PIT

18

394

Beam tolerances: summary for 3D ellipsoid

Different rms bunch lengths at EMSY1 !

- Booster position optimization for 3D ellipsoidal and flat-top laser shapes with fixed beam energy
- Booster position optimization for 3D ellipsoidal and flat-top laser shapes with varied beam energy
- Beam studies for flat-top and 3D ellipsoidal laser shapes with fixed booster position of Z=2.8m
- Emittance optimization for 3D ellipsoid with fixed booster position of Z=2.9m
- Emittance optimization for flat-top profile with fixed booster position of Z=2.7m
- Summary

Emittance optimization for flat-top (Z=2.7m)

ASTRA simulation setup: fixed parameters

- > Flat-top cathode laser pulse with 21.5ps FWHM length and 2ps rise and fall times
- 0.55 eV average kinetic energy of the photoelectrons
- Gun gradient: 60.58 MV/m corresponding to Pz~6.7 MeV/c beam momentum after the gun
- Initial booster position: 2.7m
- Bunch charge: 1 nC
- Searching for the best transverse emittance at EMSY1 (Z=5.74 m)

ASTRA simulation setup: varied parameters

- ▶ Laser transverse rms spot size on the cathode \rightarrow [0.4:0.02:0.54] mm
- > Gun ASTRA phase → [-2:0.5:1] deg
- > Booster gradient → [12:1:21] MV/m
- ▶ Main solenoid current \rightarrow [384:1:389] A

Best laser rms spot size \rightarrow 0.48 mm Best gun phase \rightarrow -1 deg Best booster gradient \rightarrow 18 MV/m Best solenoid current \rightarrow 387 A

Emittance optimization with fixed booster position (Z=2.7m)

Beam tolerances: summary for flat-top

Different rms bunch lengths at EMSY1 !

DESY

Beam dynamics comparing 2 booster positions (flat-top)

Transverse emittance: 2 different cases

Conclusion

Flat-top temporal laser profile:

- Z=2.7m yields to shorter bunch (higher peak current) compared to Z=2.9m case
- Tolerances comparable for Z=2.7m and Z=2.9m
- > Z=2.8m acceptable

3D ellipsoidal laser profile:

- Best beam tolerances at Z=2.7m
- Worst beam tolerances at Z=2.9m (compared to all cases)
- > Z=2.8m acceptable

Summary of beam studies for flat-top and 3D ellipsoidal laser profiles

Temporal	profile	Flat-top	3D homogeneous	Flat-top	3D homogeneous	Flat-top	3D homogeneous	Flat-top	3D homogeneous
Transverse	distribution	radial homogeneous	3D homogeneous	radial homogeneous	3D homogeneous	radial homogeneous	3D homogeneous	radial homogeneous	3D homogeneous
Trms	ps	6.272	6.1	6.272	6.75	6.272	5.5	6.272	6.1
XYrms	mm	0.401	0.39	0.42	0.42	0.46	0.4	0.48	0.4
Th. emit.	mm mrad	0.339	0.33	0.356	0.356	0.39	0.339	0.407	0.339
Ecath.	MV/m	60.58							
RF gun phase	deg	-1.5	-1.5	-1	-2	-1	-2	-0.5	-2
MaxBz	Т	0.2279	0.2297	0.2277	0.2289	0.228	0.2292	0.2279	0.2284
CDS starting position	m	3.07	3.07	2.9	2.7	2.8	2.8	2.7	2.9
MaxE	MV/m	19.76	19.76	16	19.76	20	20	18	13
Charge	nC				1				
Momentum	MeV/c	23.96	23.96	20.68	23.96	24.2	24.2	22.4	18
Projected emittance	mm mrad	0.639	0.419	0.62	0.4	0.62	0.423	0.63	0.408
Th. / proj.	%	53	79	58	89	63	80	65	83
<sl. emit.=""></sl.>	mm mrad	0.572	0.392	0.558	0.383	0.54	0.395	0.543	0.389
Rms bunch length	mm	2.163	2.162	2.12	2.163	2.05	2.05	2.02	2.13
Peak current	Α	43.2	46.8	43.9	46.8	45.4	49.8	45.7	47.3
Longitudinal emittance	pi keV mm	98.2	88	84	91.7	86.7	72.3	79.9	61.9

Summary

Zboo=3.1m (current booster position)

> Flat-top \rightarrow much better beam tolerances compared to 3D ellipsoid

Zboo=2.9m (optimum position for flat-top)

- > Flat-top → higher peak current (Z=3.1m), smaller (slice) emittance, better tolerances (3.1m)
- > 3D ellipsoid → comparable (slice) emittance (better tolerances (Z=3.1m), worse compared to other two

Zboo=2.8m

- > Flat-top → higher peak current (Z=3.1m), smaller (slice) emittance, better tolerances (3.1m)
- > 3D ellipsoid → 50A peak current, comparable (slice) emittance (Z=3.1m), better tolerances w.r.t. Z=3.1m but worse compared to Z=2.7m

Zboo=2.7m (optimum position for 3D ellipsoid)

- > Flat-top → highest peak current, comparable (slice) emittance, better tolerances (Z=3.1m)
- > 3D ellipsoid \rightarrow best machine performance, best tolerances (Z=3.1m)

To be done

- Complete emittance optimization for flat-top by varying the booster gradient (Z=2.9m)
- Emittance optimization for flat-top and 3D ellipsoid by varying the booster gradient (Z=2.8m)
- Folerance studies comparing different cases with the <u>same</u> rms beam length at EMSY1

Thank you for your attention !

