Last measurements in July 9 - 10

- ✓ 20 pC bunch charge
- ✓ 700 pC bunch charge

Dmitriy Malyutin PPS July 2013

2013.07.09M 14:28:20, 20 pC bunch charge, HEDA1

Momentum phase scan

Momentum distributions

2013.07.09M 14:28:20, 20 pC bunch charge, HEDA1

2013.07.09M 14:28:20, 20 pC bunch charge, HEDA1

Measured and simulated phase spaces

Measured phase space, in pixels

Conclusion for the case of 20 pC bunch charge

- The shapes of the measured and the simulated phase spaces look very similar.
- The measured phase space shows much higher slice momentum spread than the simulated one.
- Physical limit for momentum resolution of 4 keV/c per pixel is not sufficient to resolve the fine structure of the bunch.

2013.07.09M 13:17:33, 700 pC bunch charge, HEDA1

Momentum phase scan

Momentum distributions

2013.07.09M 13:17:33, 700 pC bunch charge, HEDA1

2013.07.09M 13:17:33, 700 pC bunch charge, HEDA1

Simulation, 2.5 m, 1.4 nC charge from laser intensity

0.83 nC – charge extracted!

Charge extraction

Conclusion for the case of 700 pC bunch charge

- Looks like that phase space consists of two separated parts
- The structure can be explained by the virtual cathode formation, what also can be seen in ASTRA simulations

