Influence of laser beam temporal profile on the electron beam emittance

Martin Khojoyan PITZ Physics Seminar 23.05.2013

The study plan

- To optimize transverse emittance for Gaussian, Flat-top and 3D ellipsoidal laser profiles with the same bunch rms length at EMSY1
- To minimize the impact of numerical errors on the emittance by adjusting the space charge parameters in ASTRA
- > To study the e-beam tolerances at 3 different temporal laser shapes
- To monitor electron bunch parameters at EMSY1
- > To summarize the comparison for 3 cases of laser temporal profiles

PITZ setup used for emittance optimization

Emittance optimization screen-5.74 m downstream the cathode

Minimizing numerical errors on transverse emittance

- Space charge (Nrad, Nlong, Nmin and cell_var in ASTRA) parameters tuning to minimize numerical errors on transverse emittance
- E-beam tolerance studies by keeping optimized and the same SC settings in ASTRA for 3 cases of laser temporal profile

Summary of 3 cases: The same rms bunch length at EMSY1

		Parameter	Unit	Laser shape type			
cathode laser		Temporal	profile	cylindrical		3D ellipsoidal	
				Gaussian	Flat-top	3D homogeneous	Gaussian2
		Transverse	distribution	radial homogeneous		3D homogeneous	
		Trms	ps	6.09	6.27	6.27	6.27
		XYrms	mm	0.42	0.415	0.4	0.4
RF gun Å		Th. emit.	mm mrad	0.36	0.35	0.34	0.34
		Ecath.	MV/m	60.58	60.58	60.58	60.58
		Phase	deg	-1	-1	-1.8	-1.5
		MaxBz	Т	0.227	0.228	0.2297	0.226
beam @ EMSY1 CDS		MaxE	MV/m	18	19.76	20	16
		Charge	nC	1	1	1	1
		Momentum	MeV/c	22.4	24	24.2	20.7
		Proj. emittance	mm mrad	1.08	0.635	0.416	1.15
		Th. / proj.	%	31	55	82	30
		<si. emit.=""></si.>	mm mrad	0.635	0.57	0.393	0.65
		'Peak' slice emit.	mm mrad	0.84	0.6	0.5	0.9
		Peak current	А	47.5	43	46.7	45.5
		Longitudinal emittance	pi keV mm	101.7	95.7	89.2	103.1

3 different e-beam shapes with the same rms bunch length at EMSY1

Different beam shapes with the same rms length at EMSY1

Gaussian Flat-top 3D ellipsoidal 0.559 mm 0.556 mm 0.95 mm Y, mm Y, mm шШ `ـ X, mm X, mm X, mm 0.64 mm mrad 0.42 mm mrad .08 mm mrad 1 30 30 30 20 20 20 10 10 px, keV/c keV/c px, keV/c Ď, -10 -10 -10 -20 -20 -20 -30 -30 -30 -40 x, mm x, mm x, mm

Fig.3. E-beam transverse phase spaces and projections at EMSY1. The same rms bunch length for 3 cases.

E-beam slice parameters for the same rms bunch length: 3 laser profiles

Fig.4. Beam slice parameters for Gaussian, Flat-top and 3D ellipsoidal laser profiles.

Martin Khojoyan Influence of temporal laser shape on beam emittance | PPS, 23.05. 2013 | Page 8

Longitudinal phase spaces and beam side views for 3 cases

Fig.5. Longitudinal phase spaces and beam side views for 3 different temporal laser profiles.

E-beam tolerances for 3 different laser profiles at 1nC

Fig.6. E-beam tolerance studies for Gaussian, flat-top and 3D ellipsoidal laser profiles.

- Emission parameters in ASTRA were optimized to obtain the smallest numerical impact on the emittance
- Tuned the laser length to have the same rms beam length at EMSY1 for Gaussian, flat-top and 3D ellipsoidal laser shapes. Machine parameters were optimized afterwards for the best transverse emittance for 3 cases
- E-beam tolerances have been studies for 3 cases

Thank you for your attention !!

Comparing Gaussian profiles with different lengths

- Fig.7. Beam slice parameters for two cases:
- a) The same laser length as flat-top and ellipse
- b) The same e-beam rms length as for flat-top and ellipse

