Chromatic effects in quadrupole

Update

A. Mostacci et al., "*Chromatic effects in quadrupole scan emittance measurements*", PRST-AB 15, 082802 (2012)

Galina Asova PITZ Physics Seminar

1 nC, smallest emittance Gun#4.1

Case 1: 1 nC, $\varepsilon_{\text{EMSY1}}$ = 0.7 mm mrad, $\sigma_{x,\text{EMSY1}}$ = 0.65 mm, p = 24.96 MeV, σ_{γ} = 0.4 %

Previous talk - plots - wrong.

 $\Delta\epsilon \sim 0.001$ mm mrad / 0.1 mm mrad

- Space charge excluded in the tracking
- > ASTRA:

> measured quad profile used > particles lost on apperture

Galina Asova | Chromatic effects in quad scans @ PITZ | 25/04/2013 | Seite 2

* Calculated over the full gradient scanning range [-7, 7] T/m

High1Scr5

$\Delta\epsilon \sim 0.0003$ mm mrad / Lost particles

Systematic uncertainty – smaller spot size at the quad

Case 2: $\sigma_{x, EMSY1}$ = 0.21 mm, $\varepsilon_{x, EMSY1}$ = 0.87 mm mrad

High1Scr4

Smaller Δ than for bigger spot sizes. >

* Calculated over the full gradient scanning range [-7, 7] T/m

25/04/2013 | Seite 4

Systematic uncertainty – smaller spot size at the quad

Case 2: $\sigma_{x, EMSY1}$ = 0.21 mm, $\varepsilon_{x, EMSY1}$ = 0.87 mm mrad

High1Scr5

 $\Delta \epsilon$ = 2.2e-5 mm mrad* / Lost particles

* Calculated over the full gradient scanning range [-7, 7] T/m

Quadrupole focusing in advance

- Use High1Q1/2 to focus the beam at the entrance of the quadrupole (Case 1)
 - Only one plane possible since small $\sigma_{\!x}$ and $\sigma_{\!xx'}$ are needed together
 - hard since with the scan σ_v might be bigger than the screen

* Calculated over the full gradient scanning range [-7, 7] T/m

Big spot at the entrance of the quad

Case 3: EMSY1: $\varepsilon = 0.82$ mm mrad

 $\sigma_{x, v}$ = 0.8 mm, in front of High1Q3 \rightarrow 1.1 mm

Focusing as in the previous slide: control $\sigma_{y'}$, $\sigma_{x'}$, $\sigma_{xx'}$

High1Scr4/5 pretty much the same result for focused beam.

 $\Delta \epsilon$ = 6e-6 mm mrad* / 0.02 mm mrad

Big spot at the entrance of the quad

Case 3: EMSY1: $\varepsilon = 0.82$ mm mrad

 $\sigma_{x,v}$ = 0.8 mm, in front of High1Q3 \rightarrow 1.1 mm

No upstream focusing

High1Scr4

0.8822 0.88 xxN, σ_, ≠ 0, hard edge quad 0.8821 ^εxN; σ__/= 0, hard edge quad 0.86 ^εx, AST**R**A quad 0.84 [mm mrad] _x [mm mrad] 0.882 0.8819 0.8818 0.8 0.8817 0.78 -5 0 5 grad [T/m]

 $\Lambda \epsilon = 0.01^* / 0.05 \text{ mm mrad}$

Losing beam downstream High1Scr4.

20 pC

> Optimised machine settings as in

Krasilnikov et al., "*Experimentally minimized beam emittance from an L-band photoinjector*", PRST-AB 15, 100701 (2012)

High1Scr4

20 pC, no booster

- PIT Z
- Settings as in Grygorii Vashchenko, "Emittance simulation for a different electron bunch charges with upgraded PITZ setup", DPG 2013

Final remarks

- > Calculated systematic uncertainly much smaller than simulated
 - Discrepancies in the calculated spot sizes
 - Quads in model hard edge
 - In ASTRA measured profiles

> Derive mathematical formalism of a smooth quadrupole

