Summary of HBEB workshop



Ultra-High Brightness Electron Beams for X-ray Free Electron Lasers
(Bruce Carlsten)
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+  We can control the formation of the eigen-emittances by controlling
correlations when the beam is generated (demonstrated in Flat-Beam
Transforms (FBTs))

*  We recover the eigen-emittances as the beam rms emittances when all
_correlations are removed

Two Color X-ray FEL at LCLS (Alberto Lutman)

3 schemes discussed.

The first one (the simpler one) presents a SASE process in two
subsequent undulators tuned at different wavelengths. The first SASE
must reach not the saturation.



High energy gain helical IFEL at Brookhaven National Laboratory

(Joseph Duris)

IFEL: e-bunches are accelerated and
bunched by the radiation.

Same setup of a seeded FEL but the
undulator setup is different: strong
taper (both B period and amplitude)

Helical undulator

Electrons always moving in helix
so always transferring energy.

Helical yields at least factor of 2

higher gradient.

RUBICON

Parameter Value
Input e-beam energy 50 Mev
Final beam energy 117 MeV
Final beam energy spread 2% rms

Average accelerating gradient 124 MV/m

Laser wavelength 10.3 pm
Laser power 500 GW
Laser focal spot size (w) 980 pm
Laser Rayleigh range 25 cm
Undulator length 54 cm
Undulator period 4—-6cm
Magnetic field amplitude 5.2-7.7kG

Two colors FEL driven by a comb-like electron beam distribution

(Enrica Chiadroni)

Comb beam
compressed via
velocity bunching.
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EOS locked seeding system toward FT-limited XFEL pulses (Hiromitsu
Tomizawa)

Towards Zeptosecond-Scale Pulses from X-ray FELs (David Dunning)

Few-Cycle Pulse Generation in an X-Ray Free-Electron Laser
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Shot Noise Suppression in Linac Beams (Daniel Ratner)

Electron Microbunching
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Longitudinal and transverse beam manipulation for compact laser
wakefield accelerator based free-electron laser (Alexandre

Loulergue)

Beams from laser plasma acceleration need to be

manipulated before being injected into the undulator:

- The chicane lengthens the beam and reduce the
slice energy spread

- The combination chicane + quadrupoles focuses
the beam and corrects the chromaticity

Chicane 5m In-Vac Cryo ready Undulator (PrFeB)
15 mm period
B~1.5T @ gap=3.6 mm

Energy De-mixing
r,~1mm

B~02T

mdm“n—m S >

source

First triplet Second triplet
Re-focusing Chromatic matching
G <200T/m G<40T/m
Bore = 100 mm length (+~1.5m)

10 mm radius



High Brightness SASE operation of X-ray FELs (Neil Thompson)

Chicanes between undulators are inserted so to delay the e-bunch
wrt the radiation pulse and increase the slippage (and the
cooperation length).

Twisted Photons (Erik Hemsing)



Advancements on Theory and Simulations of FELs (Brian McNeil)

Two-color pulse generation in the FERMI@Elettra FEL for pump-
probe experiments (Giuseppe Penco)



Longitudinally coherent single-spike radiation from a SASE FEL

(Gabriel Marcus)

Position (mm)
' ] :

Single-shot spectrum
- No taper

Large projected energy spread
- Large bandwidth

530 540 550
Wavelength (nm)

Single-shot spectrum
- With taper

~50% of shots registered a
single spike

Position (mm} Position (mm)

520 530 5400 550 560
Wavelength (nm)

Top: experiment, Bottom: Simulation




Coherent diffraction imaging of microbunched relativistic electron
beams: imaging the microstructure of high-brightness beams

(Agostino Marinelli)

Microbunching is often
described as a one-
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From a single far field measurement only the
amplitude IBz(kx,ky,k) | can be recovered

They developed and checked
experimentally an iterative algorithm
(SOFIA, Spatially Oversampled Far-field
Image Analysis) that reconstruct b.

space

The final retrieved quantity is the transverse
dependence of beam microbunching:
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