Chromatic effects in quadrupole

Emittance degradation after a scanning quadrupole

A. Mostacci et al., "*Chromatic effects in quadrupole scan emittance measurements*", PRST-AB 15, 082802 (2012)

- > Theoretical overview
- > Spot size variation
- > Chromaticity induced emittance

Galina Asova PITZ Physics Seminar

Emittance change in a chromatic single quad line

Quad: k, L_q : $f^{-1} = K(1 - \delta)$ for $K = kL_q$

 $\delta = \frac{\Delta p}{p}, \sigma_{\gamma} = \sqrt{\left< \delta^2 \right>} \quad \text{known in advance}$

1. Include correlations between transverse coordinates and energy $\begin{array}{c} x_1 = x_1 \\ x_1' = x_0' + K(1-\delta) \end{array}$

16

0

$$\epsilon_1^2 = \epsilon_0^2 \bigoplus K^2 \sigma_x^2 \langle (x_0 \delta)^2 \rangle \bigoplus K^2 \langle x_0^2 \delta \rangle^2 \bigoplus 2K(\langle x_0 x_0' \rangle \langle x_0^2 \delta \rangle \bigoplus \langle x_0 x_0' \delta \rangle \sigma_x^2)$$

partial compensation of the chromatic term ϵ_c

$$\sigma_{\rm L}^2 = \sigma_{{\rm L},\delta=0}^2 + ({\rm KL})^2 \left< \delta^2 x_0^2 \right> + 2 {\rm KL} \left< 4 - {\rm KL} \right> \left< \delta x_0^2 \right> + 2 {\rm KL} \left< \delta x_0 x_0^2 \right>$$

2. Negligible correlations

$$\varepsilon_{1}^{2} = \varepsilon_{0}^{2} \oplus K^{2} \sigma_{x}^{4} \sigma_{\gamma}^{2} = \varepsilon_{0}^{2} + \varepsilon_{c}^{2}$$
$$\sigma_{L}^{2} = \sigma_{L,\delta=0}^{2} + (KL)^{2} \sigma_{\gamma}^{2} \sigma_{x}^{2}$$

Setup at PITZ

Which screen to be used?

Case 1: 1 nC, ϵ_{EMSY1} = 0.7 mm mrad, $\sigma_{x,\text{EMSY1}}$ = 0.65 mm p = 24.96 MeV, σ_{γ} = 0.4 %

(Imain for smallest emittance on EMSY1, σ_{ini} = 0.37 mm)

Measured beam size – influence of non-zero σ_v

- > The beam size with chromaticity taken into account is always bigger.
- > Such differences are hard to resolve and do not include any correlations.

* Calculated over the full gradient scanning range [-7, 7] T/m

Impact of non-zero correlations

Such differences are hard to resolve, but they:

- can contribute to systematic uncertainty >
- one needs to keep correlations as small as possible (a hint how to focus at the entrance > of the quad)

* Calculated over the full gradient scanning range [-7, 7] T/m

If the energy spread increases

 σ_{γ} = 0.9% (220 keV) – Booster off-crest phase

Imain for smallest emittance on EMSY1

 $\sigma_{x, EMSY1} = 0.54 mm$ $\varepsilon_{x, EMSY1} = 0.7 mm mrad$

The spot size, incl. correlations, is further underestimated \rightarrow the fit parameters smaller than the real \rightarrow the emittance would be underestimated.

$$\sigma_{\rm L}^2 = \sigma_{{\rm L},\delta=0}^2 + (KL)^2 \sigma_{\gamma}^2 \sigma_{\rm x}^2$$

The emittance calculated from the fit: $\varepsilon_{\text{meas}}^2 = \varepsilon_{\text{actual}}^2 + \frac{\sigma_{\gamma}^2}{1 + \sigma_{\gamma}^2} \frac{ac}{L^2} = \Delta \varepsilon = f(\sigma_{\gamma}, \sigma_{x}, \sigma_{x'}, \sigma_{xx'})$

as from the fit: $a = \sigma_x^2 (1 + \sigma_y^2)$, $c = \sigma_x^2 + L^2 \sigma_{x'}^2 + 2L \langle xx' \rangle \leftarrow$ depending directly on the parameters in front of the quadrupole

Systematic uncertainty – smaller spot size at the quad

 $\Delta \varepsilon$ = 3e-6 mm mrad*

 $\Delta \epsilon$ = 2.2e-5 mm mrad*

 $\Delta\epsilon$ = 1.2e-5 mm mrad*

- > Smaller Δ than for bigger spot sizes.
- The impact on the uncertainty is small, but the focusing should provide small correlations.

* Calculated over the full gradient scanning range [-7, 7] T/m

Quadrupole focusing including correlations

- > Use High1Q1/2 to focus the beam at the entrance of the quadrupole (Case 1)
 - Only one plane possible since small $\sigma_{\!x}$ and $\sigma_{\!xx'}$ are needed together
 - hard since with the scan σ_v might be bigger than the screen
 - Calculated gradients of High1Q1/2, then ASTRA tracking

 $\Delta \epsilon$ = 3e-6 mm mrad*

Quadrupole focusing including correlations

- Use High1Q1/2 to focus the beam at the entrance of the quadrupole (Case 1)
 - Only one plane possible since small σ_x and $\sigma_{xx'}$ are needed together
 - hard since with the scan σ_v might be bigger than the screen
 - Calculated gradients of High1Q1/2, then ASTRA tracking

Quadrupole focusing disregarding correlations

- PITZ Photo injector Test Facility
- > Use High1Q1/2 to focus the beam at the entrance of the quadrupole (Case 1)
 - Gradients of High1Q1/2: beam at the quad is converging in both planes
 - ASTRA tracking

* Calculated over the full gradient scanning range [-7, 7] T/m

 $\Delta \varepsilon = 2e-6 \text{ mm mrad}^*$

Big spot at the entrance of the quad

Case 3: EMSY1: $\epsilon = 0.82 \text{ mm mrad}$

 $\sigma_{x,\,v}$ = 0.8 mm, in front of High1Q3 \rightarrow 1.1 mm

Focusing as in the previous slide: control $\sigma_{y'}$, $\sigma_{x'}$, $\sigma_{xx'}$

Final remarks

- > The increase in emittance after the quadrupole is negligible for
 - small beam size at the entrance of the quad
 - small energy spread
 - small correlations
 - is not really affected by the position of the observation screen
- For big spot sizes it is not sufficient to focus only
 - the focusing should include the covariance (more like matching)
 - two upstream quads needed
 - possible mostly for one plane

Systematics can be known in advance

