Investigations With a Camera at the Cathode Position

Comparison of optical properties at cathode position with virtual cathode

Matthias Gross

Camera at Cathode Position PITZ Physics Seminar Zeuthen, 4. April 2013

TOC

Motivation

> Setup

Results

- Lateral intensity distribution
- Size
- Laser pulse energy
- Edge effect of vacuum mirror
- Comparison with simulation

- Question: how does the laser beam look like at the photocathode compared to the virtual cathode position?
- > Opportunity: gun exchange
 - Place camera of same type as VC2 at position normally occupied by photocathode
 - Need: special holder for camera and double diagnostics cross (contains vacuum mirror)
- > Special holder was designed and constructed
- Setup was integrated into PITZ beam line and experiments were conducted on 11. and 12. of March 2013

Setup

Comparison

Photocathode

Virtual cathode

Quality similar, a little better on the photocathode (only one mirror in the path)

Size

BSA size [mm]*	Cathode camera			VC2			Size ratios Cathode/VC2			
	xRMS	yRMS	xyRMS	xRMS	yRMS	xyRMS	х	У	ху	BSA/VC2 xyRMS
0.08	0.066	0.065	0.065	0.064	0.063	0.063	1.03	1.03	1.03	1.26
0.16	0.056	0.068	0.062	0.055	0.062	0.058	1.02	1.10	1.06	2.74
0.22	0.072	0.085	0.078	0.067	0.078	0.072	1.07	1.09	1.08	3.04
0.33	0.095	0.107	0.101	0.091	0.106	0.098	1.04	1.01	1.03	3.36
0.75	0.202	0.21	0.206	0.203	0.205	0.204	1.00	1.02	1.01	3.68
1.13	0.3	0.301	0.300	0.306	0.294	0.300	0.98	1.02	1.00	3.77
1.52	0.413	0.402	0.407	0.409	0.4	0.404	1.01	1.01	1.01	3.76
1.98	0.511	0.499	0.505	0.504	0.493	0.498	1.01	1.01	1.01	3.97
2.37	0.624	0.604	0.614	0.618	0.588	0.603	1.01	1.03	1.02	3.93
3.5	0.843	0.817	0.830	0.836	0.791	0.813	1.01	1.03	1.02	4.30

1.02 1.04 Average: 1.03

- Laser beam a little bit bigger on photocathode (1 to 3%) >
- *BSA (calibration?) Ratio BSA size to xyRMS about 4 for flat tops, reduced for smaller sizes
 - No flat top for small BSA

Energy

BSA size [µm]*	Р	ulse energy [p	[Lo				
	laser trolley	before DDC	at cathode***	DDC/trolley	cathode/DDC	cathode/trolley	B/A^2 (density)
30	1.8	31.6	4.7	17.78	0.15	2.64	1.98
40	2.9	90.3	40.1	31.27	0.44	13.90	1.81
50	5.3	154.8	64.7	29.34	0.42	12.27	2.11
60	6.9	209.7	88.6	30.19	0.42	12.76	1.93
70	9.6	261.3	116.8	27.19	0.45	12.15	1.96
80	13.4	412.9	159.1	30.84	0.39	11.88	2.09
160	16.1	1619.4	640.1	100.51	0.40	39.73	0.63
220	101.1	3000.0	1301.9	29.67	0.43	12.88	2.09
330	212.8	5935.5	2694.2	27.90	0.45	12.66	1.95

Constant fluence except red marked measurement (error)

- *BSA (calibration?) density constant \rightarrow intercept calibration ok
- > Ratios are constant except for 30µm BSA (real effect?)
- > Only 40 to 45% reflection of vacuum mirror
 - Mirror damage? R=70% measured in lab before mounting into beam line

Diffraction Effects at Photocathode (PC) Laser Beam Line Simulation with ZEMAX Physical Optics Propagation Tool

Big difference between VC2 and PC for small BSAs

Measurements with Cathode Camera for Small BSAs

- Cathode camera shows double maximum as in simulation but in xdirection and for different BSA sizes (<0.07mm)</p>
 - Possible reason: ?
- No energy loss visible until BSA of 0.03mm
- rms size increasing for small BSAs

Simulated Scan over Vacuum Mirror (BSA 1.2mm)

- Influence on pattern already for 1mm displacement
- > Cut for displacement >2mm

Matthias Gro

Scan over Vacuum Mirror (BSA 1.2mm)

- It is important to stay in the middle of the vacuum mirror!
- Results comparable to simulation

x=0mm

osition | 4. April 2013 | Page 11

A Side Note

Left and Right are exchanged for PC and VC2

1 mirror to the cathode, 4 mirrors to VC2

