Photoemission studies at PITZ in February 2013

M.Krasilnikov

Emission studies: motivation

Emission studies: modeling

D.Dowell, J.Schmerge "Quantum efficiency and thermal emittance of metal photocathodes", PRST-AB 12, 074201 (2009)

$$QE \approx \frac{1 - R(\omega)}{1 + \frac{\lambda_{opt}(\omega)}{\bar{\lambda}_{e-e}(\omega)}} \cdot \frac{\left(\hbar\omega - \phi_{eff}\right)^2}{8\phi_{eff}(E_F + \phi_W)} \quad \text{, where the effective work function (Schottky term): } \phi_{eff} = \phi_W - e_{\sqrt{\frac{e\beta E}{4\pi\varepsilon_0}}}$$

The emitted charge:

$$Q = \frac{1 - R(\omega)}{1 + \frac{\lambda_{opt}(\omega)}{\bar{\lambda}_{e-e}(\omega)}} \cdot \frac{N_{\gamma}}{8\phi_{eff}(E_F + \phi_W)} \left(\hbar\omega - \phi_W + e\sqrt{\frac{e\beta E}{4\pi\varepsilon_0}}\right)^2$$

D.Dowell, PAC 2011 Tutorial \rightarrow Derivation of Schottky scan function: emitted charge vs. launch phase \rightarrow 2-parameter fit

$$Q \propto \eta \cdot LT \cdot \left(1 + b\sqrt{E}\right)^m$$

LT = laser transmission (%) E – field at the cathode (MV/m) η , b, m – fitting parameters

Emission studies: modeling \rightarrow RF field

Simultaneous fitting (LT=13% and 25%): Phase range: $10 \rightarrow 70 \text{deg}$ $E = E_{cath} \cdot sin\varphi_0$ $\eta = 8.44E \cdot 8$ b = 205.9m = 1.805

$$Q \propto \eta \cdot LT \cdot \left(1 + b\sqrt{E}\right)^m$$

- Simultaneous fitting → assumptions are not correct?
- Almost no RF impact for low SC density
- RF field impact increases with SC density increase

Further emission studies: Ecath·LaserSpotSize=const

Parameters in legend: (σ_{xy}^{laser} , $P_{rf,gun}$, LT)

 $\sigma \ _{xy}^{laser} = \sqrt{\sigma_x \cdot \sigma_y}$ - rms spot size of the cathode laser

 $P_{rf,gun}$ - peak rf power in the gun cavity

LT – laser transmission was always tuned to keep laser pulse energy constant

#	P _{rf,gun} , MW	σ ^{laser} , mm	LT, %	$\sqrt{P_{rf,gun}} \cdot \sigma_{xy}^{laser}$
1	6.49	0.302	57.0	0.769
2	5.99	0.312	52.6	0.764
3	5.45	0.327	48.2	0.763
4	5.00	0.341	43.8	0.762
5	4.55	0.361	39.5	0.770
6	3.99	0.382	35.1	0.762
Δ=	48%	-24%		STDEV=0.49%

Simultaneous variation of the rf field and the space charge density at the cathode by keeping the laser pulse energy and $E_{cath0} \cdot \sigma_{xy}^{laser}$ constant yields very similar extracted bunch charge for a rather wide range of the launch phase.

Emission studies: LT scans and ASTRA simulations

PITZ RF gun and photo cathode laser

Temporal pulse shaper

Flattop

Gaussian:

Emission G-FT program: main idea

Laser transverse distribution

- x 2 gun gradients (7.75MW and 4MW)
- x laser pulse energies (e-meter in tunnel 4;20;37nJ), same for the Gaussian and F-T profiles
- long. momentum measurements
- laser pulse energy (LT) scans for the MMMG phase

New measurements – Emission G-FT program February 2013

							-			
						Ernission G-F	<u>,)</u>			
	#	Laser profile	RF power (MW)	LT (%)	Laser pulse energy (pJ)	(w.r.t.MMG)	Measurement	Comment	shift	a de la composición d Reference de la composición de la compos
+	$\overline{1}$	Gaussian, 2.9ps	7.75	100	1336 3745	scan 1deg	Charge LOW.ICT1	Qmax= 625pC	20130216A	22:13
+	2	Gaussian, 2.9ps	7.75	10	149	scan 1deg	Charge LOW.FC2	Qmax= 758 (20130216A	27:48
+	3	Gaussian, 2.9ps	7.75	- 50	720	scan 1deg	Charge LOW.ICT1	Qmax= 35Op C	20130216N	03:01
	Ø	Gaussian, 2.9ps	7.75	10	149	scan 0.5deg	Momentum LEDA	MMMG= -6923 MaxPz= 7.088ドベイC	20130216A	23:05 01:16
+-	(5)	Gaussian, 2.9ps	7.75	scan	scan	MMMG	Charge LOW.ICT1		20130216N	02:39
++/	6)	Gaussian, 2.9ps	4	scan	scan	MMMG	Charge LOW.ICT1		96190217N	CSI 60 50
+	Õ	Gaussian, 2.9ps	4	95 ₁₀₀₇ %	1336	scan 1deg	Charge LOW.ICT1	Qmax= \$50pC	201302171	22:47
-+-	(8)	Gaussian, 2.9ps	4	10+036	149	scan 1deg	Charge LOW.FC2	Omax= 69pC	201302174 ~~	23:48(5.8)
1	0	Gaussian, 2.9ps	4	50748	720	scan 1deg	Charge LOW.ICT1	Qmax= 350pC	201 SOCIEAN	23:26
1	10)	Gaussian, 2.9ps	4	10?.	149	scan 0.5deg	Momentum LEDA	MMMG= - 71 Les MaxPz= 5, 3 Koula	20152EIZA	00:15012
*	(11) Flat-top	10,7104 (7.75	G \$1.	149	scan 0.5deg	Momentum LEDA	MMMG= 5 deg 7deg MaxPz= 7.090 7.092	201302181	01:002:00
((12)	Flat-top	7.75	scan	scan	MMMG	Charge LOW.ICT1	Lunch = 400A	201302120	01:21/2:54
+	(13)	Flat-top	7.75	6437.	1336	scan 1deg	Charge LOW.ICT1	Qmax= 650 4399	201302182	03:10
+1	[14]	Flat-top	7.75	?	149	scan 1deg	Charge LOW.FC2	Qmax= 420 pC	2019#:QN	03:28
4	I	Flat-top	7.75	35, A.Y.	719.78	scan 1deg	Charge LOW.ICT1	Qmax= 360pC	20130218N	05:28
	16	Flat-top	4	7/0	149	scan 0.5deg	Momentum LEDA	MMMG= 10003 3704 MaxPz= 5,304	201402i8N	05:15
	17	Flat-top	4	scan	scan	MMMG	Charge LOW.ICT1	10dly; I=350A	2013071BN	B:28
	18	Flat-top	4	63,7%	- 1336	scan 1deg	Charge LOW.ICT1	Qmax= 640pc \$50A	20180218N	05:46
	19	Flat-top	4	?	149	scan 1deg	Charge LOW.FC2	Qmax= 70 pC		_
	20	Flat-top	. 4	374	719.78	scan 1deg	Charge LOW.ICT1	Qmax= 360pC	201302182	06:05
	+ Maasure UC2 laser profile KUC2 pictures saled to the folder U.J. /Lasur/Transfile/2013/ + Maasuree OSS at the End.									

MMMG phase determination = low Q Schottky + LEDA scans

- Short Gaussian temporal profile
- Gun FB is on (tuned, reflection <3%)

 $\varphi_0 = \Phi_0 - \text{gun SP phase}$

 $\Phi_0(4.0 \text{MW}) = -32 \text{deg}$

 $\Phi_0(7.75 \text{MW}) = -23 \text{deg}$

Zero-crossing phase determination

- Compared with the measured integrated temporal laser profile (time converted into rf phase units)
- Zero phase → middle of the rising edge

 $\varphi_0 = \Phi_0 - \text{gun SP phase}$

 $\Phi_0(4.0\text{MW}) = -32\text{deg}$

 $\Phi_{MMMG}(7.75$ MW, gun SP phase = -69 deg) = 46 deg

 $\Phi_0(7.75 \text{MW}) = -23 \text{deg}$

 Φ_{MMMG} (4.0MW, gun SP phase = -71deg) = 39deg

- The discrepancy in the slope → rf phase jitter or/and by the laser timing jitter to the master oscillator?
- Estimations on the rms phase jitter :
 - ~2.5deg (5.2ps) → for the short Gaussian laser pulses
 - ~1.8deg (2.9ps) → for the flat-top cathode laser pulses.

MMMG phase measurements vs. simulations

70

- E_{cath1}=46.01MV/m
- Phase=39.75deg

Simulated: Max<Pz>=7.088MeV/c: • E_{cath2}=62.68MV/m

• Phase=44.98deg

50

Schottky scans for the maximum laser pulse energy

Phase \rightarrow w.r.t. MMMG phase

From the parallel plate capacitor model: $Q_{QE-lim,PPCM} = \pi \varepsilon_0 R^2 E_0 \sin \varphi_0 = \pi \varepsilon_0 R^2 E_{cath}$ E.g. for $E_{cath} = 50 \frac{MV}{m}$; R = 0.6mm; $Q_{QE-lim,PPCM} \cong 500pC << \text{observed}$!!!

$$Q_{QE-lim} \propto Q_0 \left(1 - \sqrt{\frac{\phi_{eff}}{\hbar\omega}}\right)^m$$

 $\hbar\omega = 4.81 eV$

$$\phi_{eff} = E_G + E_A - 0.0379 \sqrt{E_{cath} (MV/m)}$$

Field enhancement fits (37nJ case)

$$Q_{QE-lim} \propto Q_0 \left(1 - \sqrt{\frac{\phi_{eff}}{\hbar\omega}}\right)^m$$

$$\phi_{eff} = 3.5eV - 0.0379 \sqrt{E_{cath}(MV/m)}$$

$$\hbar\omega = 4.81eV$$

$$Q_{max}(50MV/m) = 655nC$$

 $Q_{m=2}(50MV/m) = 655pC$ $Q_{m=1}(50MV/m) = 650pC$

- The difference in increasing parts of the measured curves → space charge effects?
- Common upper part → QE-limit, which is not dependent on space charge density at the cathode, because the high electric rf field at the cathode compensates the space charge effect.
- The difference in dependencies for 7.75MW and 4MW (both flat-top profiles) can be explained by difference in the emission dynamics. The laser pulse duration is ~8deg of rf and for 4MW case the electric field of ~45MV/m corresponds to the peak field (φ₀~90deg), whereas for 7.75MW it corresponds to the phase φ₀~45deg. → surface states?
- The fits based on the experimental data shows that for the field range >40MV/m better approximation is obtained for $m \le 2$?

Ref.→D.Dowell, J.Schmerge "Quantum efficiency and thermal emittance of metal photocathodes", PRST-AB 12, 074201 (2009)

$$Q = \frac{1 - R(\omega)}{1 + \frac{\lambda_{opt}(\omega)}{\bar{\lambda}_{e-e}(\omega)}} \cdot \frac{N_{\gamma}}{8\phi_{eff}(E_F + \phi_W)} \left(\hbar\omega - \phi_W + e\sqrt{\frac{e\beta E}{4\pi\varepsilon_0}}\right)^2$$

Field enhancement fits (4nJ case)

$$Q_{QE-lim} \propto \mathrm{Q}_0 \left(1 - \sqrt{\frac{\phi_{eff}}{\hbar \omega}}\right)^m$$

$$\phi_{eff} = 3.5 eV - 0.0379 \sqrt{E_{cath}(MV/m)}$$

 $\hbar\omega = 4.81 eV$

 $Q_{m=2}(50MV/m) = 70.5pC$ $Q_{m=1.8}(50MV/m) = 69pC$

Field enhancement fits (20nJ case)

$$Q_{QE-lim} \propto Q_0 \left(1 - \sqrt{\frac{\phi_{eff}}{\hbar\omega}}\right)^m$$

$$\phi_{eff} = 3.5 eV - 0.0379 \sqrt{E_{cath}(MV/m)}$$

 $\hbar\omega = 4.81 eV$

 $Q_{m=2}(50MV/m) = 370pC$ $Q_{m=1.5}(50MV/m) = 365pC$

Field enhancement fits: discussion

$$Q_{QE-lim} \propto Q_0 \left(1 - \sqrt{\frac{\phi_{eff}}{\hbar\omega}}\right)^{m=2}$$

 $\phi_{eff} = 3.5 eV - 0.0379 \sqrt{E_{cath}(MV/m)}$

 $\hbar\omega = 4.81 eV$

E _{la}	aser	fitted Q_0 (m=2)			
(nJ)	/4nJ	(pC)	/Q0(4nJ)		
4	1	2169	1.00		
20	5	11384	5.25		
37	9.25	20152	9.29		

Laser pulse energy (laser transmission) scans

SPPhase = MMMG phase

- The case of short Gaussian pulses and low gun gradient (4MW in the gun) → the strongest saturation of the charge production due to a stronger space charge effect.
- The lowest space charge density case (– the flat-top and 7.75MW in the gun) → the most linear charge production curve.
- It is interestingly enough the closeness of curves for the 4MW gun power and flat-top laser pulse to the dependence for 7MW and the short Gaussian pulse:

• rf fields at the moment of emission is different (29MV/m for 4MW and 45MV/m for 7.75MW).

Laser pulse energy scans: measurements vs. simulations

A simple model to estimate this effect was suggested in:

- [J. Rosenzweig et al., "Initial measurements of the UCLA rf photoinjector", NIM A 341 (1994) 379-385].
- [David. H.Dowell, "Tutorial on (generating) high brightness beams", PAC11 Tutorial, April 1, 2011]

Laser transverse halo modeling-1: Gaussian radial profile

Assuming emission limitation while the space charge density exceeds some threshold value ρ_{scl} for a Gaussian radial distribution of the cathode laser intensity:

$$F(r) = \frac{E_l}{2\pi\sigma_r} e^{-\frac{r^2}{\sigma_r^2}}$$

where $E_l = \int_0^\infty F(r) 2\pi r dr$ is the laser pulse energy

Using the expression for the quantum efficiency for the Cs₂Te cathode $QE[\%] \cong 0.5 \frac{Q_{exp}[pC]}{E_l[nJ]}$, where Q_{exp} is theoretically expected charge which would be emitted without presence of space charge (cathode image) forces.

By taking into account the space charge density limit ρ_{scl} and denoting $Q_{max} = 2\pi \sigma_r^2 \rho_{scl}$ produced charge can be calculated as

$$Q = \begin{cases} Q_{exp}, & \text{if } Q_{exp} \le Q_{max} \\ Q_{max} \cdot \left(1 + \ln \frac{Q_{exp}}{Q_{max}}\right), & \text{if } Q_{exp} > Q_{max} \end{cases}$$

Another assumption \rightarrow the dependence $\rho_{scl} \propto E_0 sin \varphi_0$

Laser transverse halo modeling-1: fitting measurements

Simultaneous fit of 4 curves using: $Q_{max}(7.75MW) = Q_{max}(4.0MW) \cdot \frac{E_{cath2} \cdot \sin \varphi_{MMMG2}}{E_{cath2} \cdot \sin \varphi_{MMMG2}}$

Laser temporal profile	rf peak power	QE	Q _{max}	$\chi^{2} = \sum \frac{(meas - fit)^{2}}{meas.error^{2}}$	SIII ΨMMMG1
Flat-top (17ps)	7 751414	0 600/	457pC	12.9	$\rho_{scl}(flat - top)$
Short Gaussian (2.7ps)	7.7510100	0.00%	291pC	12.1	$\frac{1}{\rho_{\rm ev}}(Gaussian) \approx 1.55$
Flat-top (17ps)	4 01 414	0 1 0 0/	293pC	12.3	P sci (Guussiun)
Short Gaussian (2.7ps)	4.01/11/17	ð.12%	187pC	21.8	

The overall χ^2 of the fit is 59.2, the reduced chi-squared statistic yields $\chi^2_{red} = \frac{\chi^2}{\nu} = 0.79$, where the number of degrees of freedom $\nu = N_{points} - N_{fit.par.} - 1 = 75$.

Laser transverse halo modeling-2: radial flat-top + Gaussian tails

 $Q = Q_{core} + Q_{halo}$

$$Q_{core} = \frac{1}{1 + \xi \cdot \eta} \begin{cases} Q_{exp}, & \text{if } Q_{exp} \leq Q_{max} \\ Q_{max} & \text{if } Q_{exp} > Q_{max} \end{cases}$$

$$Q_{halo} = \frac{\eta}{1 + \xi \cdot \eta} \begin{cases} \xi \cdot Q_{exp}, & \text{if } \xi \cdot Q_{exp} \leq Q_{max} \\ Q_{max} \cdot \left(1 + \ln \frac{\xi \cdot Q_{exp}}{Q_{max}}\right) & \text{if } \xi \cdot Q_{exp} > Q_{max} \end{cases}$$

Laser transverse halo modeling-2: fitting measurements

Simultaneous fit of 4 curves using: $Q_{max}(7.75MW) = Q_{max}(4.0MW) \cdot \frac{E_{cath2} \cdot \sin \varphi_{MMMG2}}{E_{cath1} \cdot \sin \varphi_{MMMG1}}$

Laser temporal profile	rf peak power	ξ	η	QE	Q _{max}	$\chi^{2} = \sum \frac{(meas - fit)^{2}}{meas.error^{2}}$
Flat-top (17ps)		0.98	1.17	8.36%	673pC	21.5
Short Gaussian (2.7ps)	7.7510100				445pC	16.7
Flat-top (17ps)				8.01%	432pC	5.2
Short Gaussian (2.7ps)	4.0MW				285pC	10.1

 $\frac{\rho_{scl}(flat-top)}{\rho_{scl}(Gaussian)} \approx 1.51$

The overall χ^2 of the fit is 53.5, the reduced chi-squared statistic yields $\chi^2_{red} = \frac{\chi^2}{\nu} = 0.73$, where the number of degrees of freedom $\nu = N_{points} - N_{fit.par.} - 1 = 73$.

Conclusions

> From previous photoemission studies:

•Experimental optimum (w.r.t. beam emittance) conditions \rightarrow space charge assisted emission

■Simulated conditions ≠ experimental

Schottky-like effect is stronger pronounced for higher space charge densities

Possible emission invariant $E_o \sin \varphi_0 \cdot R_{laser} = inv?$

Recent (Feb.2013) results:

•2 temporal profiles (laser pulse length ~ factor 6), the same transverse spot size, 3 laser pulse energies (tuned for both temporal profiles), 2 peak rf power levels (~ factor 2)

•Field enhancement fit for the QE-limited emission $Q_{QE-lim} \propto Q_0 (1 - \sqrt{\phi_{eff}/\hbar\omega})^m$:

- •Rather good agreement in Q₀ values for m=2 (Me-cathode model)
- •Charge dependence on electric field \rightarrow strong dependence on SC density:
 - •Low SC density \rightarrow m~2
 - •High SC density \rightarrow m~1

Laser pulse energy scans for the MMMG phase:

•Gaussian transverse tails fit \rightarrow rather poor

F-T core + Gaussian tails → better, but still

SC limit ratio ~1.5 (despite laser pulse length ratio is ~6)

•F-T(4MW) ~ Gaussian(7.75MW)

Emission:

transient effect → depends on the laser temporal profile (parallel plate capacitor model)

