

Optimization of the longitudinal phase space distribution of a 20 pC e-bunch at the RF-gun exit for quasi single spike operation at the European XFEL

B. Marchetti, M. Krasilnikov, F. Stephan, DESY, Zeuthen, Germany I. Zagorodnov, DESY, Hamburg, Germany

DPG Dresden

European XFEL layout

XFEL working points:

- I. I. Zagorodnov, M. Dohlus, Phys. Rev. ST Accel. Beams 14, 014403 (2011).
- II. I. Zagorodnov, Beam Dynamics Simulations for XFEL (Jan. 2011), http://www.desy.de/fel-beam/s2e/index.html

Laser longitudinal profile: flat-top 20 ps long -> e-bunch emittance has been optimized

Short radiation pulses operation

L_b ≤ 2πL_c → single spike regime L_b = bunch length L_c = cooperation length

In order to fulfill this requirement or get as close as possible to it:

- The charge of the e-bunch must be small (20 pC or less)
- It is necessary to work at the maximum compression point (or very close to it)

Short pulses operation and choice of the laser parameters

- When working with low charges (e.g. 20 pC) and at maximum compression, we may decide to optimize the e-bunch production and compression w.r.t. RF-stability and shortest achievable bunch length.
- The use of short bunches at the gun exit (by using a shorter laser pulse length) allows a better stability for the e-bunch compression.
- The correction of the non-linearity in the longitudinal phase space is a critical point: in order to achieve the shortest bunch length at maximum compression the non-linearity present in the longitudinal phase space of the e-bunch at the gun exit must be precisely known.

Why the longitudinal phase space distribution at the gun exit must be precisely known.

- The setup of the main linac has been fixed
- The aim is to eliminate the second and third order non-linear terms in the longitudinal phase space distribution having the maximum compression at the linac exit.

Simulations

The study has been restricted to 2 longitudinal laser shapes:

- 2 ps FWHM gaussian
- 5.4 ps FWHM flat-top having 2ps rise/fall time
- The setup of the main linac is fixed.
- The injector setup is different for each input distribution.
- I have used a fast, partially 3D, transport (see the list of codes below).

Used codes:

- ASTRA (tracking with 3d space charge, DESY, K. Flötmann) in the injector;
- CSRtrack (tracking through dipoles, DESY, M. Dohlus, T. Limberg) in the LH, DL and BCs
- Linear transport matrices multiplication in the linac sections;
- RF-wakefields and longitudinal space charge along the linac sections have been added analytically (I. Zagorodnov, M. Dohlus, Phys. Rev. ST Accel. Beams 14, 014403 (2011)).

Flat top laser pulse 2/5.4\2 ps, transverse rms 0.11 mm

Input beam for Genesis code:

Beam at the linac exit E= 14 GeV

 $\begin{array}{l} \Delta E/E=2.53^{*}10^{-4} \\ \epsilon_{x}=0.16 \mbox{ mm*mrad} \\ \epsilon_{y}=1.11 \mbox{ mm*mrad} \\ FWHM=0.74 \mbox{ fs} \ (0.22 \mbox{ \mum}) \end{array}$

Radiation production (λ =0.26 nm)

Radiation production

Studies using the gaussian longitudinal laser profile having 2.1 ps FWHM length

Beam parameters at the exit of the linac:

Laser rms spotsize (mm)	ε _x (mm*mrad)	ε _v (mm*mrad)	Energy spread (relative)	FWHM (µm)	FWHM (fs)
0.064	0.224	0.964	2.67*10^(-4)	0.28	0.934
0.07	0.21	0.92	2.33*10^(-4)	0.341	1.14
0.1	0.19	0.804	1.44*10^(-4)	0.432	1.44

Radiation production for the 0.064 mm rms spotsize

Known limits of the presented simulations

- The wakefields and the SC in the undulator are not included. Due to the high peak current the impact of the wakefields is expected to be nonnegligible.
- The transport line between the exit of the main linac and the entrance of the first undulator has not been taken into account.
- The impact of the RF jitter on the bunch length has not been quantitatively investigated (even though we expect to have a fluctuation of about 20% of the peak current with a jitter of the phase of ACC1 of 0.001 deg).
- The track along the linac was done only for the longitudinal phase space. A precise study requires instead the use of Astra or Elegant.

Conclusion & outlook

- A laser configuration delivering a single spike radiation pulse at 0.26 nm wavelength has been discussed using fast S2E simulations.
- This configuration use a short flat-top at the cathode in order to relax RF tolerances, despite the increase in emittance.
- In order to tune the machine settings the knowledge of the longitudinal phase space of the e-bunch at the gun exit is crucial.
- Experimental measurements to characterize the e-bunch properties at the exit of the gun are feasible at Pitz.

Thank you for the attention !

I would like to thank J. Roensch-Schulenburg, M. Rehders and in general the group of "Ultra-short pulses at FLASH" for profitable discussions.

