Image analysis in emcalc2

G. Vashchenko, A. Shapovalov

January 10, 2013

EMSY and MOI related filters

Beamlets related filters

Background and sigma filter

$w \epsilon[1 ;$ CameraWidth $] h \in[1 ;$ CameraHeight $] n \in[1 ;$ Nframes $]$
Difference of average signal and average background for each pixel within the N frames:

$$
S m B_{w, h}=\frac{1}{N f r a m e s} \sum_{n}\left(S_{w, h, n}-B_{w, h, n}\right)
$$

Standard deviation of the each background pixel:

$$
B r m s_{w, h}=\sqrt{\frac{1}{\text { Nframes }} \sum_{n} S_{w, h, n}^{2}-\left(\frac{1}{\text { Nframes }} \sum_{n} B_{w, h, n}\right)^{2}}
$$

Filtering and MOI creation: If $S_{m B} B_{w, h} \leq C u t \cdot \mathrm{Brms}_{w, h}$, where Cut $\in \mathbb{N}$ then $M_{w, h}=0$, else $M_{w, h}=1$.

Neighbors filters

Each filter applied N times, $N \in \mathbb{N}$.

Removing product filter:

$$
M_{w, h}=M_{w+1, h} \cdot M_{w+1, h-1} \cdot M_{w, h-1}
$$

If $M_{w, h}>0$ then $M_{w, h}=1$.
Restoring sum filter:
$M_{w, h}=M_{w+1, h}+M_{w+1, h-1}+M_{w, h-1}+$

$+M_{w-2, h-1}+M_{w-3, h-1}$
If $M_{w, h}$ then $M_{w, h}=1-\mathrm{MOI}$ created.
$E M S Y_{w, h}=M_{w, h} \cdot\left(S m B_{w, h}>\right.$ Cut \cdot Brms $\left._{w, h}\right)$

- EMSY created.

Subtracting of average background

Each filter applied only in MOI region.

$n \epsilon[1 ;$ Nbeamlets]
Subtracting average background over all beamlets from each beamlet:

$$
\begin{equation*}
S m B_{w, h, b}=S_{w, h, b}-\sum_{b} B_{w, h, b} \tag{1}
\end{equation*}
$$

Standard deviation of the each background pixel:

$$
B r m s_{w, h}=\sqrt{\frac{1}{\text { Nbeamlets }} \sum_{b} S_{w, h, b}^{2}-\left(\frac{1}{\text { Nframes }} \sum_{b} B_{w, h, b}\right)^{2}}
$$

Each beamlet filtering: If $S m B_{w, h, b} \leq C u t \cdot \mathrm{Brms}_{w, h}$, where Cut $\in \mathbb{N}$ then $S_{m, h, b}=0$.

Neighbors filter

Each filter applied N times, $N \in \mathbb{N}$.

Removing product filter:

$$
\begin{aligned}
M_{w, h, b} & =\operatorname{Sm}_{w+1, h, b} \cdot \operatorname{Sm} B_{w+1, h-1, b} \cdot \operatorname{Sm} B_{w, h-1, b} \cdot \\
& \cdot \operatorname{Sm} B_{w-1, h-1, b} \cdot \operatorname{Sm} B_{w-1, h, b} \cdot \operatorname{Sm} B_{w-1, h+1, b} \\
& \cdot \operatorname{Sm} B_{w, h+1, b} \cdot \operatorname{Sm} B_{w+1, h+1, b}
\end{aligned}
$$

If $M_{w, h, b}==0$ then $S m B_{w, h, b}=0$
Strange filter:

$$
\begin{aligned}
M_{w, h, b} & =S m B_{w+1, h, b}+S m B_{w+1, h-1, b}+S m B_{w, h-1, b}+ \\
& +S_{w-1, h-1, b}+\operatorname{Sm}_{w-1, h, b}+\operatorname{Sm} B_{w-1, h+1, b}+ \\
& +S m B_{w, h+1, b}+\operatorname{Sm} B_{w+1, h+1, b}
\end{aligned}
$$

If $M_{w, h, b} \leq 0$ then $S m B_{w, h, b}=0$.

Thank You for attention!

...and apologize for a not DESY style, this is my first experience to create slides with LATEX, unfortunately DESY doesn't provide LATEX template. Hope for a next time I will create my own LATEX theme corresponds to DESY design.

