Free electron wire for measurement of longitudinal charge distribution of relativistic beams

Lazar Staykov Zeuthen, November 2012

Outline

Introduction

- Few words about me,
- and why the problems discussed in the talk are important
- Brief overview of existing techniques advantages and limitations
- Novel approach
- Discussion

Introduction

- Former PITZ member responsible for transverse phase space characterization
 - Numerical optimization
 - Diagnostic components
 - Beam dynamics
 - Heavy shift participation
- Since:
 - Freelance consultant
 - Postdoc at Advanced Energy Systems

Introduction

- Longitudinal distribution of short electron beams (<<1 ps) is critical for number of applications:
 - accelerator based light sources
 - plasma wake field acceleration
 - high field atomic physics
- The measurement of the longitudinal profile of such a short bunch poses a significant challenge to the existing diagnostic techniques
- Non-destructive and destructive techniques

Overview of existing techniques*

- Spectral Techniques (ST)
 - Coherent transition or difraction radiation (CTR or CDR), surface or apperture
 - Synchrotron radiation (CSR), magnetic field
 - Smith-Purcell radiation (S-P), grating used.
- Electro Optic (EO) techniques
- Electron Bunch Manipulation (EBM) techniques
 - Phase space manipulation
 - Optical replica

^{*} Jamison, S. P. et al., "Femtosecond resolution bunch profile measurements", Proceedings of EPAC'06, TUYPA01, Edinburgh, Scotland, 26-30 June 2006.

Overview of existing techniques*

- Most of the ST and all the EO techniques are cheap, compact, non-destructive with a good resolution.
 - The components involved in the interaction with the bunch field should be close to the beam due to
 - the 1/r² nature of the field,
 - EM field has an opening angle $\alpha \sim 2/\gamma$
 - $\gamma \sim 1000$ distance smaller 2 mm for resolution of 10 fs
 - can not be used in high average current machines
 - difficulties transporting and detecting the full spectral range of the emitted radiation for ST techniques.

^{*} Jamison, S. P. et al., "Femtosecond resolution bunch profile measurements", Proceedings of EPAC'06, TUYPA01, Edinburgh, Scotland, 26-30 June 2006.

Overview of existing techniques*

- EBM techniques are intrinsically destructive,
 - inappropriate for use in user-operation conditions,
 - on the other hand are expensive,
 - and bulky
 - the most precise measurement method
 - quite versatile as experimental possibilities

^{*} Jamison, S. P. et al., "Femtosecond resolution bunch profile measurements", Proceedings of EPAC'06, TUYPA01, Edinburgh, Scotland, 26-30 June 2006.

- Use another electron beam (PB) wich interacts with the Coulomb field of the relativistic bunch (RB)*
- apply EBM on the PB
 - cheaper than conventional EBM
 - Resolution?

* Pasour, J. A. et al., "Nonperturbing electron beam probe to diagnose charged-particle beams", Rev. Sci. Instrum., 63(5), May 1992.

Logatchov, P. V. et al., "Non-destructive Singlepass Monitor of Longitudinal Charge Distribution in an Ultrarelativistic Electron Bunch", Proceedings of PAC'99, New York, 1999.

Logachev, P. V. et al., "Application of a Low-Energy Electron Beam as a Tool of Nondestructive Diagnostics of Intense Charged-Particle Beams", Instruments and Experimental Techniques., 51(1), 2008.

- Deflecting experiment in "Mission Research"
 - very thin very low energy (keV) beam
 - deflection θ proportional to distance v and intensity of RB
 - prior knowledge of RB distro
 - down to 300 ps
 - PB intensity main limitation

* Pasour, J. A. et al., "Nonperturbing electron beam probe to diagnose charged-particle beams", Rev. Sci. Instrum., 63(5), May 1992.

Logatchov, P. V. et al., "Non-destructive Singlepass Monitor of Longitudinal Charge Distribution in an Ultrarelativistic Electron Bunch", Proceedings of PAC'99, New York, 1999.

Logachev, P. V. et al., "Application of a Low-Energy Electron Beam as a Tool of Nondestructive Diagnostics of Intense Charged-Particle Beams", Instruments and Experimental Techniques., 51(1), 2008.

- Deflecting experiment in Novosibirsk
 - complex analysis of PB trajectory
 - prior knowledge of RB distro
 - resolution better than 300 ps

* Pasour, J. A. et al., "Nonperturbing electron beam probe to diagnose charged-particle beams", Rev. Sci. Instrum., 63(5), May 1992.

Logatchov, P. V. et al., "Non-destructive Singlepass Monitor of Longitudinal Charge Distribution in an Ultrarelativistic Electron Bunch", Proceedings of PAC'99, New York, 1999.

Logachev, P. V. et al., "Application of a Low-Energy Electron Beam as a Tool of Nondestructive Diagnostics of Intense Charged-Particle Beams", Instruments and Experimental Techniques., 51(1), 2008.

- Use more intense PB and apply EBM
 - interacts directly with RB
 - wider PB x-section
 - cheaper than conventional EBM

 $x' \approx 2\pi \, eV/(\lambda \cdot E_k)$

- Find optimal PB parameters using numerical simulations
 - VORPAL for the beam-bunch interaction
 - ASTRA for the rest

- PIC simulations using VORPAL
 - simulation volume 0.01x0.03x0.013 m
 - grid 50x100x1000
 - 30 kparticles for RB and 3 Mparticles for the PB
 - RB parameters:
 - duration 100 fs RMS (FT and Gaussian)
 - 15 MeV and 2 GeV
 - Emittance 1 mm.mrad
 - 0.2-0.5 mm X-section at IP

- PIC simulations using VORPAL
 - simulation volume 0.01x0.03x0.013 m
 - grid 50x100x1000
 - 30 kparticles for RB and 3 Mparticles for the PB
 - RB parameters:
 - duration 100 fs RMS (FT and Gaussian)
 - 15 MeV and 2 GeV
 - Emittance 1 mm.mrad
 - 0.2-0.5 mm X-section at IP

Ek=60 keV

Ek=2 MeV

PB co-propagates with the bunch

- Optimize:
 - source parameters
 - magnet configuration
 - deflecting cavity

Slippage factor, gap 0.0116 m

PB energy, MeV	bunch@2GeV	bunch@15MeV
0.5	1.58 mm	1.49 mm
2.0	0.26 mm	0.25 mm
3.5	0.09 mm	0.08 mm

- The higher the PB energy the better
 - this put tough requirements for the source RF gun
 - 2 MeV choosen as a compromise
 - PB duration ten(s) ps
 - PB peak current max 1 A .

- PIC simulations using VORPAL
 - simulation volume 0.01x0.01x0.0116 m
 - grid 50x50x2000
 - 30 kparticles for RB and 3 Mparticles for the PB
 - RB parameters:
 - duration 100 fs RMS (FT and Gaussian)
 - 15 MeV and 2 GeV
 - Emittance 1 mm.mrad
 - 0.2-0.5 mm X-section at IP

Novel results

Non perturbed beam
Perturbed beam

Novel results

 The FWHM and the RMS parameters increased exactly with the slippage factor

	X _{rms} , [mm]	Z _{rms} , [mm]	Z _{rms,m} , [mm]	deviation, %
Gaussian	0.5		0.038	27%
	0.2	0.00	0.037	23%
Flat Top	0.5	0.03	0.037	23%
	0.2		0.036	20%

 Additional deconvolution analysis to recover the shape of the distribution

Deconvolution

- Preliminary results, deconvoluting a moving rectangle
 - the distributions were assumed known
 - results are encouraging

	Measured, [mm]	Deviation, %
Plateau	0.0307	2.6
Gaussian	0.0334	11

RF cavities

- Normal conducting S-band gun 2.856 GHz
 - Spectra-Physics "Tsunami" laser
- Deflecting cavity, same frequency as gun:
 - voltage 600 kV
 - power 120 kW
 - resolution beter than 50 fs
 - a matching quad will be necessary

 $V = \sqrt{\left(2Z \cdot P_{RF}\right)}$

$$\sigma_x = \sqrt{(\sigma_x^2 + r_{12}^2 \cdot k^2 \cdot \sigma_z^2)}$$

 $k = 2\pi e V / \lambda E_k$

* D. Xiang, "Longitudinal-to-transverse mapping for fomtosecond electron bunch length measurement," SLAC-PUB-14100, 2010.

** S. Jia-Ru, "RF deflecting cavity design for bunch length measurement of photoinjector at Tsinghua University," Chinese Physics C (HEP&NP), vol. 32, no. 10, 2008.

Spectrometer magnets

- Requirments:
 - high resolution
 - 2x90° maximizes resolution and cancels divergence terms
 - smaller radius possible
 - trade off against magnet power consumption
 - if $\rho = 0.2 \text{ m}$, $\alpha = 90^{\circ}$ then B=0.06T, I~30A
 - at such peak field the deflection of 2 GeV beam is very small, correctors St3 and St4

Final layout

Discussion

Benefits

- non-destructive
- very good resolution
- small footprint
- direct measurement
- costs still lower than conventional EBM techniques,
- Disadvantages
 - requires RF gun and a laser
 - more expensive than most ST and EO
 - development of complex data analysis