Paper reveiw

Chromatic effects in quadrupole scan emittance measurements
A. Mostacci, M. Bellaveglia, E. Chiadroni, A. Cianchi, M. Ferrario, D. Filippetto, G. Gatti, C. Ronsivalle

```
PRST - AB 15, 082802 (2012)
```

Galina Asova

Overview

$>$ Discusses the emittance degradation due to chromatic effects in measurements deploying quadrupole scans

- Quad scans are widely used after final acceleration
- Increased energy spread (velocity bunching VB, wakefield-based acceleration)
$>$ Analytical investigations on the effects using single quad/doublet
> Analytical calculations compared to numerical ones for representative SPARC data
> General assumptions:
- X and Y planes are not coupled, emittance is geometric
- Thin-lens approximation

Measurement setup

$>140-170 \mathrm{MeV}$
$>300 \mathrm{pC}$
> longitudinal compression via VB
measure spot size

$>$ When $\mathrm{VB} \rightarrow$ the energy spread $\sigma_{\gamma}=\sqrt{\left\langle\delta^{2}\right\rangle}, \delta=\Delta \mathrm{p} / \mathrm{p}$ goes to a few percent vs 0.1% without RF compression
$>$ large $\sigma_{x y}$ at the entrance of $Q_{T} 1$ unless additional solenoid focusing is applied

Emittance change in a chromatic single quad line

Quad: $k, \mathrm{~L}_{\mathrm{q}}$

$$
\mathrm{f}^{-1}=\mathrm{K}(1-\delta) \text { for } \mathrm{K}=k \mathrm{~L}_{\mathrm{q}}
$$

1. Negligible correlations between transverse coordinates and energy

$$
\varepsilon_{1}^{2}=\varepsilon_{0}^{2}+\mathrm{K}^{2} \sigma_{\mathrm{x}}^{4} \sigma_{\gamma}^{2}=\varepsilon_{0}^{2} \Theta \varepsilon_{\mathrm{c}}^{2}
$$

$$
\Delta \varepsilon=-\varepsilon_{0}+\sqrt{\varepsilon_{0}^{2}+\mathrm{K}^{2} \sigma_{\mathrm{x}}^{4} \sigma_{\gamma}^{2}}
$$

$>\varepsilon_{0} \ll \varepsilon_{c}: \frac{\Delta \varepsilon}{\varepsilon_{0}} \sim \frac{\varepsilon_{c}}{\varepsilon_{0}}$, i.e. linear dependance on k for high-brightness beams the geometric emittance ε_{0} might be comparable to ε_{c}

$$
>\varepsilon_{0} \gg \varepsilon_{c}: \frac{\Delta \varepsilon}{\varepsilon_{0}} \sim \frac{\varepsilon_{c}^{2}}{2 \varepsilon_{0}^{2}} \text {, i.e. quadratic dependance }
$$

2. Include correlations $\mathrm{x}_{1}=\mathrm{x}_{1}, \mathrm{x}_{1}^{\prime}=\mathrm{x}_{0}^{\prime}+\mathrm{K}(1-\delta)$
```
N ~
```


Spot size variations - discard $\sigma_{x x}$

$\sigma_{L}^{2}=\sigma_{L, \delta=0}^{2} \mathcal{S}^{-}(K L)^{2} \sigma_{x}^{2} \sigma_{x i,}^{2}$ for L - distance from the quad

Before the quad:

$$
\begin{array}{ll}
\sigma_{x}=2 \mathrm{~mm} & \sigma_{x^{\prime}}=100 \mu \mathrm{rad} \\
\sigma_{x x^{\prime}}=0 & \sigma_{\gamma}=1 \% \\
L=5 \mathrm{~m} &
\end{array}
$$

$\varepsilon_{\text {meas }}^{2}=\varepsilon^{2}+\frac{\sigma_{\gamma}^{2}}{1+\sigma_{\gamma}^{2}} \frac{\mathrm{ac}}{\mathrm{L}^{2}}$ systematics

as from the scan fit: $\mathrm{a}=\sigma_{\mathrm{x}}^{2}\left(1+\sigma_{\gamma}^{2}\right), \mathrm{c}=\sigma_{\mathrm{x}}^{2}+\mathrm{L}^{2} \sigma_{\mathrm{x}^{\prime}}^{2}+2 \mathrm{~L}\left\langle\mathrm{xx}^{\prime}\right\rangle$
\rightarrow bigger σ_{x} and/or $\sigma_{x^{\prime}}$ at the quad entrance, more the emittance is affected by energy spread

Single quad calculations

RF comperssion - OFF
$p=148 \mathrm{MeV} / \mathrm{c}$, on crest
$\sigma_{x / y}=0.571 / 0.595 \mathrm{~mm}$
$\sigma_{\gamma}=0.169 \%$
$\varepsilon_{x / y}=4.7 \mathrm{e}-3 / 4.8 \mathrm{e}-3 \mathrm{~mm} \mathrm{mrad}$ (norm. $1.37 / 1.4 \mathrm{~mm}$ mrad)
$\Delta \varepsilon \sim 1 \%$ (chromatic term)
Eq. 16: ε_{x} as $\left\langle x^{\prime}\right\rangle=0$
Eq. 20: ε_{x} as $\left\langle x x^{\prime}\right\rangle \neq 0$ TSTEP - tracking

Chromatic effect in a doublet

$$
\begin{aligned}
& \varepsilon_{1}^{2}=\varepsilon_{0}^{2}+\mathrm{F}_{1} \sigma_{\gamma}^{2} \sigma_{\mathrm{x}}^{4}+\mathrm{F}_{2} \sigma_{\gamma}^{2} \sigma_{\mathrm{x}^{\prime}}^{4}+\mathrm{F}_{3} \sigma_{\gamma}^{2} \sigma_{\mathrm{xx}}{ }^{2}+\mathrm{F}_{4} \sigma_{\gamma}^{2} \sigma_{\mathrm{x}}^{2} \sigma_{\mathrm{x}^{\prime}}^{2}+\mathrm{F}_{5} \sigma_{\gamma}^{2} \sigma_{\mathrm{x}}^{2} \sigma_{\mathrm{xx}^{\prime}}+\mathrm{F}_{6} \sigma_{\gamma}^{2} \sigma_{\mathrm{x}^{\prime}}^{2} \sigma_{\mathrm{xx}}{ }^{\prime}, \\
& \mathrm{F}_{\mathrm{i}}\left(\mathrm{~K}_{1}, \mathrm{~K}_{2}, \mathrm{~L}_{12}\right), K_{2}=-K_{1}, K_{i}=K_{i}(1-\delta)
\end{aligned}
$$

If K_{1} focusing in $\mathrm{X}(>0) \rightarrow$ smaller chromatic contribution $\varepsilon_{1, \mathrm{~K}_{1}>0}^{2}-\varepsilon_{1, \mathrm{~K}_{1}<0}^{2} \sim-8 \mathrm{~K}_{1}^{5} \mathrm{~L}_{12}^{3} \sigma_{x}^{4} \sigma_{\gamma}^{2}$

Same machine/beam as (b), previous slide But $\Delta \varepsilon_{\text {doublet }}>\Delta \varepsilon_{\text {singleQuad }}$
> asymmetric effect due to smaller focusing range

Effect of sampling the quadrupole gradient

300 pC , monochromatic beam, case (b)

TABLE V. Virtual emittance measurement (TSTEP simulation) for different quadrupole scans of the same beam (parameters of Case 2 in Table I, but with $\sigma_{\gamma}=0$) compared to the expected value $\varepsilon_{\text {ref }}$.

	$\left(\varepsilon-\varepsilon_{\text {ref }}\right) / \varepsilon_{\text {ref }}$ (horizontal plane)	$\left(\varepsilon-\varepsilon_{\text {ref }}\right) / \varepsilon_{\text {ref }}$ (vertical plane)
Single quad	$-1.6 \% /-3 \%^{\mathrm{a}}$	$-1.6 \% /-3 \%^{\mathrm{a}}$
Two quads $(+,-)$	$-1.9 \% /-4 \%^{\mathrm{a}}$	$+1.98 \% /+66 \%^{\mathrm{a}}$
Two quads $(-,+)$	$+1.49 /+57 \%^{\mathrm{a}}$	$-1.7 \% /-5 \%^{\mathrm{a}}$

${ }^{\text {a }}$ The results are obtained with a gradient step $0.16 \mathrm{~T} / \mathrm{m}$, against the step of $0.08 \mathrm{~T} / \mathrm{m}$ for all the others scans (300 pC beam).

Horizontal trace space step $0.08 \mathrm{~T} / \mathrm{m}$

Horizontal trace space step $0.16 \mathrm{~T} / \mathrm{m}$

$$
\varepsilon_{\mathrm{n}}=4.8 \mu \mathrm{~m}
$$

$$
\alpha=-6.1
$$

$$
\beta=121 \mathrm{~m}
$$

Measurements, 200 pC

1. small incoming beam spot $\sigma_{x / y}=0.32 / 0.36 \mathrm{~mm}$, negligible $\sigma_{\gamma}=0.1 \%$, no VB

	Single quad	Two quads $(+,-)$	Two quads $(-,+)$
$\varepsilon_{n, x}(\mathrm{~mm} \mathrm{mrad})$	1.607 (0.075)	1.852 (0.083)	244 (0.20)
$\varepsilon_{n, y}(\mathrm{~mm} \mathrm{mrad})$	1.41 (0.26)	254 (0.46)	1.77 (0.22)
Systematically higher $\varepsilon_{\mathrm{xy}}$ in a doublet scan $\varepsilon_{\mathrm{xy}}$ systematically higher for a defocusing first quad second order effects also for low σ_{γ} and small $\sigma_{x y}$			

2. Large spot $\sigma_{x}=1.4 \mathrm{~mm}$, significant $\sigma_{\gamma}=0.86 \%$, VB applied - increased uncertainty

single quad
 $(+,-)$

$(-,+)$
Galina Asova | Chromatic effects in quad scans | 11/14/2012 | Seite 9

Conclusions

> Analytical evaluation of the chromatic effects on the measured emittance

> 2-quad scan:

- practical advantages (X and Y simultaneously, avoid looses due to aperture)
- introduces additional errors for beams with high energy spread and large spot size

$1 \mathrm{nC}, 25 \mathrm{MeV} / \mathrm{c}$

$\varepsilon_{\mathrm{xy}, \mathrm{N}}=0.73 \mathrm{~mm}$ mrad on EMSY1 $\left(\varepsilon_{\mathrm{x}}=0.015 \mathrm{~mm} \mathrm{mrad}\right)$

$$
\begin{aligned}
& \sigma_{x}=0.5 \mathrm{~mm} \\
& \sigma_{\gamma}=0.4 \%
\end{aligned}
$$

$\Delta \sigma_{\mathrm{x}} \sim 4 \% \rightarrow \varepsilon_{\text {meas }, \mathrm{x}}=0.09 \mathrm{~mm} \mathrm{mrad}$

$100 \mathrm{pC}, 25 \mathrm{MeV} / \mathrm{c}$

$\varepsilon_{\mathrm{xy}, \mathrm{N}}=0.19 \mathrm{~mm}$ mrad on EMSY1 ($\varepsilon_{\mathrm{x}}=0.004 \mathrm{~mm} \mathrm{mrad}$)
$\sigma_{\mathrm{x}}=0.18 \mathrm{~mm}$
$\sigma_{\gamma}=0.14 \%$

$$
\Delta \sigma_{x} \sim 3 \% \rightarrow \varepsilon_{\text {meas }, x}=0.06 \mathrm{~mm} \mathrm{mrad}
$$

Spot size variations

1. Negligible correlations b / n energy and transverse coordinates

$$
\sigma_{L}^{2}=\sigma_{L, \delta=0}^{2}(K L)^{2} \sigma_{x}^{2} \sigma_{\nu}^{2}, \text { for } L-\text { distance from the quad }
$$

2. Including correlations

$$
\sigma_{L}^{2}=\sigma_{L, \delta=0}^{2}+(K L)^{2}\left\langle\delta^{2} x_{0}^{2}\right\rangle+2 K L(1-K L)\left\langle\delta x_{0}^{2}\right\rangle+2 K L^{2}\left\langle\delta x_{0} x_{0}^{\prime}\right\rangle
$$

