Paper reveiw

Chromatic effects in quadrupole scan emittance measurements

A. Mostacci, M. Bellaveglia, E. Chiadroni, A. Cianchi, M. Ferrario, D. Filippetto, G. Gatti, C. Ronsivalle

PRST – AB 15, 082802 (2012)

Galina Asova

Overview

- Discusses the emittance degradation due to chromatic effects in measurements deploying quadrupole scans
 - Quad scans are widely used after final acceleration
 - Increased energy spread (velocity bunching VB, wakefield-based acceleration)
- > Analytical investigations on the effects using single quad/doublet
- > Analytical calculations compared to numerical ones for representative SPARC data
- > General assumptions:
 - X and Y planes are not coupled, emittance is geometric
 - Thin-lens approximation

Measurement setup

- > When VB \rightarrow the energy spread $\sigma_{\gamma} = \sqrt{\langle \delta^2 \rangle}$, $\delta = \Delta p/p$ goes to a few percent vs 0.1% without RF compression
 - > large σ_{xy} at the entrance of $Q_T 1$ unless additional solenoid focusing is applied

Emittance change in a chromatic single quad line

σ_x, ε₀

Quad: k, L_q $f^{-1} = K(1 - \delta)$ for K = kL_{a}

1. Negligible correlations between transverse coordinates and energy

$$\underbrace{\varepsilon_1^2 = \varepsilon_0^2 + K^2 \sigma_x^4 \sigma_\gamma^2 = \varepsilon_0^2 + \varepsilon_c^2}_{\Delta \varepsilon_c} \qquad \Delta \varepsilon = -\varepsilon_0 + \sqrt{\varepsilon_0^2 + K^2 \sigma_x^4 \sigma_\gamma^2}$$

> $\varepsilon_0 \ll \varepsilon_c$: $\frac{\Delta \varepsilon}{\varepsilon_0} \sim \frac{\varepsilon_c}{\varepsilon_0}$, i.e. linear dependance on k for high-brightness beams the geometric emittance ε_0 might be comparable to ε_c

> $\varepsilon_0 \gg \varepsilon_c: \frac{\Delta \varepsilon}{\varepsilon_c} \sim \frac{\varepsilon_c^2}{2\varepsilon^2}$, i.e. quadratic dependance

2. Include correlations $x_1 = x_1, x'_1 = x'_0 + K(1 - \delta)$

 $\begin{array}{c} \overbrace{\mathcal{C}}_{\mathbf{x}_{0}} \\ \overbrace{\mathcal{C}}_{\mathbf{x}_{0}}^{2} = \varepsilon_{0}^{2} \bigoplus K^{2} \sigma_{\mathbf{x}}^{2} \langle (x_{0} \delta)^{2} \rangle \bigoplus K^{2} \langle x_{0}^{2} \delta \rangle^{2} \bigoplus 2K(\langle x_{0} x_{0}' \rangle \langle x_{0}^{2} \delta \rangle \bigoplus \langle x_{0} x_{0}' \delta \rangle \sigma_{\mathbf{x}}^{2}) \end{array}$ partial compensation of ε_{c}

Spot size variations – discard σ_{xx}

 $\sigma_L^2 = \sigma_{L,\delta=0}^2 \notin (KL)^2 \sigma_x^2 \sigma_{x''}^2$ for L – distance from the quad

as from the scan fit: $a = \sigma_x^2 (1 + \sigma_\gamma^2)$, $c = \sigma_x^2 + L^2 \sigma_{x'}^2 + 2L \langle xx' \rangle$

 \to bigger σ_x and/or $\sigma_{x'}$ at the quad entrance, more the emittance is affected by energy spread

Single quad calculations

 $\begin{array}{ll} \mathsf{RF} \mbox{ compensation} - \mathsf{OFF} & \mathsf{Eq. 16: } \epsilon_x \mbox{ as } \langle xx' \rangle = 0 \\ \mathsf{p} = 148 \mbox{ MeV/c, on crest} & \mathsf{Eq. 20: } \epsilon_x \mbox{ as } \langle xx' \rangle \neq 0 \\ \mathsf{\sigma}_{x/y} = 0.571 \ / \ 0.595 \mbox{ mm} & \mathsf{TSTEP} \ - \ tracking \\ \mathsf{\sigma}_{\gamma} = 0.169 \ \% \\ \epsilon_{x/y} = 4.7e \ 3/4.8e \ 3 \ mm \ mrad \ (norm. 1.37/1.4 \ mm \ mrad) \end{array}$

 $\Delta \epsilon \sim 1\%$ (chromatic term)

RF comperssion – ON, p = 105 MeV/c

Chromatic effect in a doublet

 $\begin{aligned} \varepsilon_{1}^{2} &= \varepsilon_{0}^{2} + F_{1}\sigma_{\gamma}^{2}\sigma_{x}^{4} + F_{2}\sigma_{\gamma}^{2}\sigma_{x'}^{4} + F_{3}\sigma_{\gamma}^{2}\sigma_{xx'}^{2} + F_{4}\sigma_{\gamma}^{2}\sigma_{x}^{2}\sigma_{x'}^{2} + F_{5}\sigma_{\gamma}^{2}\sigma_{x}^{2}\sigma_{xx'} + F_{6}\sigma_{\gamma}^{2}\sigma_{x'}^{2}\sigma_{xx'}, \\ F_{i}(K_{1}, K_{2}, L_{12}), K_{2} &= -K_{1}, K_{i} = K_{i}(1 - \delta) \end{aligned}$

If K₁ focusing in X (> 0) \rightarrow smaller chromatic contribution $\epsilon_{1,K_1>0}^2 - \epsilon_{1,K_1<0}^2 \sim -8K_1^5 L_{12}^3 \sigma_x^4 \sigma_\gamma^2$

Effect of sampling the quadrupole gradient

300 pC, monochromatic beam, case (b)

xp (mrad)

TABLE V. Virtual emittance measurement (TSTEP simulation) for different quadrupole scans of the same beam (parameters of Case 2 in Table I, but with $\sigma_{\gamma} = 0$) compared to the expected value ε_{ref} .

Galina Asova | Chromatic effects in quad scans | 11/14/2012 | Seite 8

Measurements, 200 pC

1. small incoming beam spot $\sigma_{x/y}$ = 0.32/0.36 mm, negligible σ_{y} = 0.1 %, no VB

2. Large spot σ_x = 1.4 mm, significant σ_y = 0.86 %, VB applied – increased uncertainty

Conclusions

Analytical evaluation of the chromatic effects on the measured emittance

> 2-quad scan:

- practical advantages (X and Y simultaneously, avoid looses due to aperture)
- introduces additional errors for beams with high energy spread and large spot size

1 nC, 25 MeV/c

 $\varepsilon_{xy, N}$ = 0.73 mm mrad on EMSY1 (ε_x = 0.015 mm mrad) $\sigma_x = 0.5 \text{ mm}$ $\sigma_{\gamma} = 0.4\%$ 0.24 $= \varepsilon_{\rm xN, \sigma_{\rm xx'}} = 0$ ್**್ ≠ 0** 6 ^{− ε}xΝ,σ_{,,}≠0 5 0.235 σ_× [mm] 4 3 0.23 2 0.225 0L -1

$$\Delta\sigma_x\,{\color{black}{\sim}}\,\,4\%\,{\color{black}{\rightarrow}}\,\,\epsilon_{meas,x}$$
 = 0.09 mm mrad

1

KL

0.98

1.02

1.04

1.06

0.96

3

2

Galina Asova | Chromatic effects in quad scans | 11/14/2012 | Seite 11

1

grad [T/m]

0

100 pC, 25 MeV/c

 $\epsilon_{xy, N}$ = 0.19 mm mrad on EMSY1 (ϵ_x = 0.004 mm mrad) σ_x = 0.18 mm σ_γ = 0.14%

 $\Delta \sigma_x \sim 3\% \rightarrow \epsilon_{meas, x}$ = 0.06 mm mrad

Spot size variations

1. Negligible correlations b/n energy and transverse coordinates

 $\sigma_L^2 = \sigma_{L,\delta=0}^2 + (KL)^2 \sigma_x^2 \sigma_y^2$, for L – distance from the quad

2. Including correlations

$$\sigma_L^2 = \sigma_{L,\delta=0}^2 + (KL)^2 \langle \delta^2 x_0^2 \rangle + 2KL(1 - KL) \langle \delta x_0^2 \rangle + 2KL^2 \langle \delta x_0 x_0' \rangle$$

