Improvement of the tomographic reconstruction procedure at PITZ.

- > Tomographic reconstruction of the transverse phase space at PITZ
- > Motivation: refined calculation of rotations
- > V-Code simulations
- > Simulation results
- > Summary and outlook

Georgios Kourkafas PITZ Physics Seminar 01.11.2012

Tomographic reconstruction of the

transverse phase space at PITZ

1) Quadrupoles form a FODO lattice and oppose a complete 180° rotation in the transverse phase space

Tomographic reconstruction of the transverse phase space at PITZ

- 1) Quadrupoles form a FODO lattice and oppose a complete 180° rotation in the transverse phase space
- Screens capture projections of both transverse planes at equidistant phase advance values (= projection angles)
- 3) Reconstruction using the Maximum ENTropy algorithm (MENT) with the corresponding transport matrices

Georgios Kourkafas | Improvement of the tomographic reconstruction procedure at PITZ | 01.11.2012 | Page 2 of 8

- The actual beam parameters at each screen differ from the target values due to:
 - Fringe fields of the quadrupoles
 - Linear space charge
 - Non-linear space charge

- The actual beam parameters at each screen differ from the target values due to:
 - Fringe fields of the quadrupoles
 - Linear space charge
 - Non-linear space charge

> Wrong beam parameters \rightarrow wrong phase advance : $\varphi_n = \int_{z_0}^z \frac{dz}{\beta(z)}$

- The actual beam parameters at each screen differ from the target values due to:
 - Fringe fields of the quadrupoles
 - Linear space charge
 - Non-linear space charge
- > Wrong beam parameters \rightarrow wrong phase advance : $\varphi_n = \int_{z_0}^z \frac{dz}{\beta(z)}$
- > Wrong phase advance \rightarrow wrong rotation angles \rightarrow reconstruction errors:

- The actual beam parameters at each screen differ from the target values due to:
 - Fringe fields of the quadrupoles
 - Linear space charge
 - Non-linear space charge
- > Wrong beam parameters \rightarrow wrong phase advance : $\varphi_n = \int_{z_0}^z \frac{dz}{\beta(z)}$
- > Wrong phase advance \rightarrow wrong rotation angles \rightarrow reconstruction errors:

Use V-Code for a more realistic beam transport in the FODO lattice \rightarrow refine the calculated rotation of the projections

 V-Code treats the beam as a discrete set of characteristic moments → fast It outputs the σ matrix (~Twiss parameters) along the lattice including the effects of fringe fields and linear space charge

- V-Code treats the beam as a discrete set of characteristic moments → fast It outputs the σ matrix (~Twiss parameters) along the lattice including the effects of fringe fields and linear space charge
- + Simulations were run for different sets of parameters:
 - Current approach (Gtomo) vs. measured (Real) longitudinal profile of the quadrupole gradient →

- V-Code treats the beam as a discrete set of characteristic moments → fast It outputs the σ matrix (~Twiss parameters) along the lattice including the effects of fringe fields and linear space charge
- + Simulations were run for different sets of parameters:
 - Current approach (Gtomo) vs. measured (Real) longitudinal profile of the quadrupole gradient →

 No space charge forces present (as currently implemented) vs. Linear space charge forces, assuming: Gaussian and homogenous charge distribution

- V-Code treats the beam as a discrete set of characteristic moments → fast It outputs the σ matrix (~Twiss parameters) along the lattice including the effects of fringe fields and linear space charge
- + Simulations were run for different sets of parameters:
 - Current approach (Gtomo) vs. measured (Real) longitudinal profile of the quadrupole gradient →

- No space charge forces present (as currently implemented) vs. Linear space charge forces, assuming: Gaussian and homogenous charge distribution
- Emittance values of 3mm·mrad (common during measurements) and 1mm·mrad (lower limit / worst-case scenario value) at 25MeV for 1nC

- V-Code treats the beam as a discrete set of characteristic moments → fast It outputs the σ matrix (~Twiss parameters) along the lattice including the effects of fringe fields and linear space charge
- + Simulations were run for different sets of parameters:
 - Current approach (Gtomo) vs. measured (Real) longitudinal profile of the quadrupole gradient →

- No space charge forces present (as currently implemented) vs. Linear space charge forces, assuming: Gaussian and homogenous charge distribution
- Emittance values of 3mm·mrad (common during measurements) and 1mm·mrad (lower limit / worst-case scenario value) at 25MeV for 1nC
- The beam enters the FODO lattice perfectly matched (ideal case) and non-linear space charge is excluded.

Phase advance mismatch at each screen (n=1,2,3): $n \cdot 45^{\circ} - \varphi_n$, $\varphi_n = \int_{z_0}^{z} \frac{dz}{\beta(z)}$

Simulation results (I)

Phase advance mismatch at each screen (n=1,2,3): $n \cdot 45^{\circ} - \varphi_n$

dz

> Concerning the linear space charge:

- When space charge is neglected, the emittance (or charge density) does not influence the simulation result
- The influence of linear space charge increases as the emittance gets smaller
- Gaussian distribution of the linear space charge leads to a smaller mismatch compared to the homogeneous distribution, at about 30%
- The inclusion of linear space charge can shift the phase advance at a maximum of 1° (1mm·mrad case, at the exit of the lattice) → minor effect

Simulation results (II)

> Concerning the linear space charge:

- When space charge is neglected, the emittance (or charge density) does not influence the simulation result
- The influence of linear space charge increases as the emittance gets smaller
- Gaussian distribution of the linear space charge leads to a smaller mismatch compared to the homogeneous distribution, at about 30%
- The inclusion of linear space charge can shift the phase advance at a maximum of 1° (1mm·mrad case, at the exit of the lattice) → minor effect

> Concerning the gradient profile, a much bigger discrepancy is introduced:

- The matching is worse in the Real case up to a factor of 3 compared to the Gtomo case
- Neither space charge nor emittance value have an effect on this discrepancy
- The mismatch difference between the two setups has a maximum value of 7.2° at the exit of the lattice

Simulation results (III)

ΙТ

Zu

Simulation results (III)

Z

Simulation results (III)

N.B.: A phase advance mismatch affects the reconstruction more than a plain angle mismatch, due to the beam shearing.

Summary and outlook

Fringe fields and linear space charge introduce additive mismatches along the FODO lattice, up to a maximum of 8.2° for an initially matched beam

> Next steps:

- Reconstruct data using the refined transport matrices and evaluate the difference on the resulting phase space
- Add feature in the tomography code: manual input of the transport matrices
- Implement the new treatment (fringe fields + linear space charge) in the tomography code
- ➤ The non-linear space-charge effect is still excluded, but is expected to have a stronger impact → subject to future investigation

Thanks to Barbara Marchetti and Dmitriy Malyutin.

THE END.

Backup Slides

Georgios Kourkafas | Improvement of the tomographic reconstruction procedure at PITZ | 01.11.2012

V = COO	e screens	hot

PITZ

Test Facility 📉															
VCodeCR [TEMF, TU-Darmst	adt] - [gk_(tomo_3FODO.V	_	_						_			_		×
File Edit View Run	Beam Line	Tools Winde	ow Help											-	₽×
🛅 🚰 🛃 🕘 🛅 🐺	▶ • ×	22792 💭 📮	≩ <u>∓</u> ≭ (‡) ⊘	e 🖗 🔴 🗸											
X[mm]-Y[mm]:	mm 1	Υ	mm-mrad	EmX EmY	MeV En	ergy									
		•		3	25										
0.21		5			23										
	ļ,	.													
Transmiss				2	20										
Z[mm]-X[mm]:															
1.2er002		,			15										
		2		1											
	,	4			10										
Long. Section		0			5										
Z[mm]-Y[mm]:		8		0											
			0.2	0.4	0.6	0.8	1	1.2		1.4 1.	5	1.8	2	2.2	-
													. E		^
		. \1													
	DS		DS	5_1 (DriftSpace) [2]		DS_2 (DriftSpace) [4]		DS_3 (DriftSpace) [6]		DS_4 (DriftSpace) [8]		DS_5 (DriftSpac	e) [10]	DS_6	
Long. Section		2			∕ ≋ ∖		∕ā∖		V š V		V 8 V		Ĕ		-
X[mm]-PX[mrad]:	mm	x Sy	mm-mrad	Мхрх Муру	mrad M	ухрх Мруру									^
				0.09	0.0	10									
).35		0.02	0.0	,									
10				0.08	0.0	8									
). 3 · · · · · ·													
Trans. Phase Space				0.07	0.0	7									
Y[mm]-PY[mrad]:).25													
				0.06	0.0	б									
				0.05		_									
36		1.2		0.05	0.0	5									
				0.04	0.0	H		_							
Trans. Phase Space). 15		\geq		\sim	r	\sim		\sim		~		>	5
Z[mm]-PZ[keV]:				0.03	0.0	3									
		.1													
				0.02	0.0	2									
).0 5													
	 -			0.01	2011	±									
		\sum	62	0.4	V 0.6	0.8	\sim	12	\sim	1.4 1.4	, V	1.8		2.2	-
Long. Phase Space	<								-						
or Help, press F1		Г	r		-Y			¥ -	1	М	¥.			CAP NUM	IIISCRL

V-Code screenshot

P

