To a beam scraper simulations (radial vs. phase space cuts)

M.Krasilnikov, PPS 03.05.2012

Core Emittance for various bunch charges

Idea: Core Emittance from beam scraper?

Very first tests: Radial collimator = R-cut for a simulated phase space

100pC case: Simulated phase space ~ measured

NB: *This is not optimum setup from the beam dynamics ASTRA simulations, but simulations of the optimum experimental setup!*

0.2

0.2

0.4

0.4

Electron beam parameters at EMSY1

(z=5.74 m from the cathode plane)

- •Bunch charge 100 pC
- •Beam kin.(mean) energy 23.64 MeV
- •RMS bunch length = 1.74 mm
- •RMS energy spread= 29 keV [<zE'>=12.2keV]
- •Transverse phase space:
- •Xrms=Yrms=0.185 mm

zd/xd

-0.4

-0.2

0

x mm

0.2

0.4

•Xemit=Yemit=0.2075 mm mrad

Transverse phase space

-0.4

-0.2

0

y mm

Londitudinal Phase space

Momentum Spread

Longitudinal Distribution

100pC case: Charge cut using a radial aperture Ra

Emittonco	Corresponding	Doguirod	
Emiliance	Corresponding	Required	
reduction, %	charge cut, %	aperture	
	(rest charge, pC)	Ra, mm	
-41%	20% (80pC)	0.31 mm	
-52%	40% (60pC)	0.23 mm	
-72%	80% (<mark>20pC</mark>)	0.14 mm	
		very small aperture	es! sei

Compared to a phase space cut:

1nC case: simulated phase space ≠ measured

NB: This is optimum setup from the beam dynamics ASTRA simulations. There are some discrepancies with corresponding measured phase space.

Electron beam parameters at EMSY1

(z=5.74 m from the cathode plane)

- •Bunch charge 1 nC
- •Beam kin.(mean) energy 23.41 MeV
- •RMS bunch length = 2.16 mm
- •RMS energy spread= 83.8 keV [<zE'>=70.4keV]
- •Transverse phase space:
- •Xrms=Yrms=0.52 mm

0

-1

0

x mm

1

•Xemit=Yemit=0.607 mm mrad

0

-1

0y mm

Londitudinal Phase space z = 5.740 m

Longitudinal Phase-Space

.

Longitudinal Distribution

1nC case: Charge cut using a radial aperture Ra

Emittance	Corresponding	Required aperture	Remnant
reduction, %	charge cut, %	Ra, mm	charge, nC
-11%	10%	1.07 mm	0.9 nC
-31%	50%	0.65 mm	0.5 nC
-41%	75%	0.44 mm	0.25 nC
-52%	90%	0.27 mm	0.1 nC
-74%	98%	0.12 mm	0.02 nC

Compared to a phase space cut:

1nC case: Charge cut vs. lower initial charges

1nC case: Charge cut vs. lower initial charges

Conclusions

- The applied radial cut (R-cut) → "mechanical" (formal) reduction of the phase space, no electromagnetic interactions considered
- R-cut for 100pC (more realistic) case → emittance reduction requires very small apertures (~100um) ? not a practical case:
 - challenge to produce such collimator
 - pointing jitter of the electron beam
- R-cut for 1nC requires more realistic apertures (~500um) but still a challenge
- The phase space cut differs significantly from the R-cut, it shows much stronger core emittance reduction for the same charge cut

1nC vs. 100pC

