Slice emittance measurements with Transverse Deflecting Structure

1nC bunch:

- Beam optics
- TDS calibration
- Measurement results
- Longitudinal resolution

Dmitriy Malyutin PITZ physics seminar Zeuthen, February, 2012

Beam optics, ASTRA simulation, 1nC

TDS calibration at PST.Scr1, 1nC bunch charge

Quad scan (H1.Q6) with TDS deflecting voltage 1.2 MV.

Quad scan (H1.Q6) with TDS deflecting voltage 1.2 MV.

Quad scan summary

Quad scan summary, compare results

Longitudinal resolution

Longitudinal resolution

Longitudinal resolution

Vertical cut $\Delta y = 2$ mm Distance between slice centers – 2mm Slice RMS length $\sigma_z = 0.17$ mm

Vertical cut $\Delta y = 0.4$ mm Distance between slice centers – 2mm Slice RMS length $\sigma_z = 0.09$ mm

Conclusion

- Slice emittance measurement simulation done in ASTRA for 1nC bunch charge
- Simulated results are in good agreement to what was expected.
- > Achieved longitudinal resolution is about 0.1mm* (RMS), which give us about 80 slices per bunch.

*if for gauss distribution RMS = 0.1 mm then FWHM = 0.24 mm

TDS resolution

$$S = \sqrt{\beta(s) \cdot \beta(s_0)} \cdot \sin(\Delta \psi_y) \cdot \frac{eV_0k}{pc}$$

Dmitriy Malyutin | PITZ Physics Seminar| February, 2012 | Page 12

(1)

(2)

TDS resolution

$$\sigma_z = \frac{\sqrt{\varepsilon}}{\sqrt{\beta(s_0)}} \cdot \frac{pc}{eV_0 k} = \frac{\varepsilon}{\sigma_y(s_0)} \cdot \frac{\gamma mc^2}{eV_0 k} = \frac{\varepsilon_N}{\sigma_y(s_0)} \cdot \frac{mc^2}{eV_0 k}, \quad (3) \qquad k = \frac{2\pi f}{c}$$

PITZ:
$$\sigma_z = \frac{0.4 \cdot 10^{-6} m \cdot rad}{800 \cdot 10^{-6} m} \cdot \frac{0.5 \ MeV}{1.2 \ MeV \cdot 63 \ m^{-1}} = 3.4 \cdot 10^{-6} m$$
, or 11 fs

TDS induced slice energy spread

$$\sigma_{\delta} = \frac{eV_0k}{p_0c}\sigma_y(s_0),\tag{4}$$

where
$$\delta = \frac{\Delta p}{p}$$
.

PITZ:
$$\sigma_{\delta} = \frac{1.2 \ MeV \cdot 63 \ m^{-1}}{23 \ MeV} \cdot 800 \cdot 10^{-6} m = 2.6 \cdot 10^{-3} \ or \ 60 \ keV$$

Longitudinal phase space and bunch slices at 5.0m

