Slice emittance measurements with Transverse Deflecting Structure

1nC bunch:

- Beam optics
- TDS calibration
- Measurement results
- Longitudinal resolution

Dmitriy Malyutin
PITZ physics seminar
Zeuthen, February, 2012

Beam optics, ASTRA simulation, 1nC

RMS beam size

Dmitriy Malyutin | PITZ Physics Seminar| February, 2012| Page 2

TDS calibration at PST.Scr1, 1nC bunch charge

$$
\begin{gathered}
S=\frac{K_{1} \cdot 360 \cdot f}{\beta \cdot c}=0.5121 \\
S(0.6 M V)=2.083 \\
S(1.2 M V)=4.165
\end{gathered}
$$

Quad scan (H1.Q6) with TDS deflecting voltage 1.2 MV.

2012| Page 4

Quad scan (H1.Q6) with TDS deflecting voltage 1.2 MV.

Quad scan summary

Dmitriy Malyutin | PITZ Physics Seminar| February, 2012| Page 6

Quad scan summary, compare results

Dmitriy Malyutin | PITZ Physics Seminar| February, 2012| Page 7

Longitudinal resolution

Longitudinal resolution

Dmitriy Malyutin | PITZ Physics Seminar| February, 2012| Page 9

Longitudinal resolution

Vertical cut $\Delta y=2 \mathrm{~mm}$ Distance between slice centers -2 mm Slice RMS length $\sigma_{z}=0.17 \mathrm{~mm}$

Vertical cut $\Delta y=0.4 \mathrm{~mm}$
Distance between slice centers -2 mm Slice RMS length $\sigma_{z}=0.09 \mathrm{~mm}$

Conclusion

> Slice emittance measurement simulation done in ASTRA for 1 nC bunch charge
> Simulated results are in good agreement to what was expected.
$>$ Achieved longitudinal resolution is about 0.1 mm * (RMS), which give us about 80 slices per bunch.
${ }^{*}$ if for gauss distribution $\mathrm{RMS}=0.1 \mathrm{~mm}$ then $F W H M=0.24 \mathrm{~mm}$

TDS resolution

$$
\begin{equation*}
S=\sqrt{\beta(s) \cdot \beta\left(s_{0}\right)} \cdot \sin \left(\Delta \psi_{y}\right) \cdot \frac{e V_{0} k}{p c} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\sigma_{z}=\frac{\sigma_{y}}{S} \tag{2}
\end{equation*}
$$

TDS resolution

$$
\begin{equation*}
\sigma_{z}=\frac{\sqrt{\varepsilon}}{\sqrt{\beta\left(s_{0}\right)}} \cdot \frac{p c}{e V_{0} k}=\frac{\varepsilon}{\sigma_{y}\left(s_{0}\right)} \cdot \frac{\gamma m c^{2}}{e V_{0} k}=\frac{\varepsilon_{N}}{\sigma_{y}\left(s_{0}\right)} \cdot \frac{m c^{2}}{e V_{0} k}, \quad \text { (3) } \quad k=\frac{2 \pi f}{c} \tag{3}
\end{equation*}
$$

PITZ: $\quad \sigma_{z}=\frac{0.4 \cdot 10^{-6} \mathrm{~m} \cdot \mathrm{rad}}{800 \cdot 10^{-6} \mathrm{~m}} \cdot \frac{0.5 \mathrm{MeV}}{1.2 \mathrm{MeV} \cdot 63 \mathrm{~m}^{-1}}=3.4 \cdot 10^{-6} \mathrm{~m}$, or 11 fs

TDS induced slice energy spread

$$
\begin{equation*}
\sigma_{\delta}=\frac{e V_{0} k}{p_{0} c} \sigma_{y}\left(s_{0}\right) \tag{4}
\end{equation*}
$$

$$
\text { where } \quad \delta=\frac{\Delta p}{p}
$$

PITZ: $\quad \sigma_{\delta}=\frac{1.2 \mathrm{MeV} \cdot 63 \mathrm{~m}^{-1}}{23 \mathrm{MeV}} \cdot 800 \cdot 10^{-6} \mathrm{~m}=2.6 \cdot 10^{-3}$ or 60 keV

Longitudinal phase space and bunch slices at 5.0 m

