Acousto-optic Modulator (AOM) as Laser Pulse Picker

First Experiences at PITZ

Matthias Gross, Guido Klemz

AOM as Pulse Picker PITZ Physics Seminar, 08. Dec. 2011

Contents

Motivation

- > Principle: The Acousto-Optic Effect
- Properties of an Acousto-Optic Modulator (AOM)
- Setup at PITZ
- First Results
- > Next Steps
- Summary

Motivation

- ➤ Critical part of photocathode laser system: frequency quadrupling. Wavelength of laser pulses is converted from infrared to ultraviolet (at PITZ: 1030nm → 257.5nm) in two steps with nonlinear crystals – LBO and BBO
- > BBO crystal (2nd step 515nm → 257.5nm) absorbs a tiny fraction of UV light – significantly enough that effects have been seen at PITZ and FLASH
 - Absorption leads to local increase of temperature which changes the properties of the frequency conversion

> PITZ

- Difference of "cold OSS" and "warm OSS"
- Variations of bunch charge over pulse train

> FLASH

Variation of beam arrival time over pulse train

Experimental Evidences for BBO Crystal Warming at PITZ

> OSS: Difference of pulse length and form directly after starting and after waiting a few minutes (measured 05.05.2011M)

Bunch charge along pulse train (measured 04.05.2011M)

The Acousto-Optic Modulator (AOM)

- ➤ Possible solution: cw pulse train conversion into UV, then definition of pulse trains with UV pulse picker → stable temperature of BBO crystal
 - Important: pulse picker must not show same affect as BBO crystal!
- Candidate for pulse picker: Acousto-Optic Modulator (AOM)
 - Principle: Diffraction of laser beam at acoustic wave

Comparison of available AOMs

	Crystal Technologies via EQ	A-A Optoelectronics via	Gooch & Housego: 35110-2-	Brimrose via Laser2000:
	Photonics:	Pegasus Optik: MQ200-	244-BR	FSPP-250-16-BR-257
	3200-1220	B30A1.5-244.266-Br	(APE: OA99)	
Material	SiO ₂ (Quartz)	SiO ₂ (UV grade fused silica)	SiO ₂ (KrF grade fused silica)	SiO ₂ (UV grade fused silica)
Wavelength	257nm	244-266nm	244-260nm	257nm
Aperture	0.25mm diameter	1.5mm x 2mm	2mm diameter	0.3mm diameter
Center Frequency	200MHz	200MHz	110MHz	250MHz
Rise time (10%-90%)	143ns/mm beam diameter	110ns/mm beam diameter	110ns/mm beam diameter	34nm min.
		10ns min.	10 ns min.	
Contrast ratio DC	1000:1	2000:1	1000:1	>1000:1
Contrast ratio 1MHz	same	same	same	? (same)
Diffraction efficiency	75%	>70% over range	>70%	50%
		>85% @ 257nm		
Insertion loss	<5%	<5%	<1%	<2%
Geometry	Orthogonal (with AR coating)	Brewster incidence (uncoated)	Brewster incidence (uncoated)	Brewster incidence (uncoated)
Deflection angle	9mrad	8mrad	4.7mrad	10mrad
Max. power density	?	> 10W/mm ²	> 10W/mm ²	100W/mm ²
Wavefront distortion	?	<λ/12(est.)	 optical polishing 	λ/10
Max RF power	1W	4W	4W	2W
V.S.W.R	1.5:1	1.5:1	1.2:1	2:1
Driver electronics input for	TTL	Analog or TTL	TTL	1V @ 50Ω
pulse trains				
Price AOM	1400€	1998€	\$2600 =1820€	2690€
Driver	820€	4004€	\$900 =630€	3590€
Total	2220€	6002€	\$3500 =2450€	6280€
	(is 50% with report)		APE: 6613,43€	

Gooch&Housego AOM was bought in August 2011 (funded by FLASH)

Some Checks

- Used beam: 1st order (highest contrast ideally no power with RF off)
 - Total loss: (1 insertion loss) * diffraction efficiency \rightarrow around 20% at 257nm
- 1st order is frequency shifted
 - $\Delta \lambda = \frac{\lambda}{c} \Delta$ Δf : Center frequency (110MHz) $\rightarrow \Delta \lambda < 0.1 \text{pm} \text{negligible}$
- Progress of acoustic wave front during pulse duration (20 ps)
 - = 0.12 μ m << beam diameter (1mm) \rightarrow optical pulse sees essentially fixed reflector
- Pointing stability
 - $\Delta \Theta \Rightarrow \lambda \frac{\Lambda}{V_a} = \Delta f$: Frequency uncertainty; V_a : acoustic velocity (≈ 6000 m/s for SiO₂) \mapsto e.g. 1Hz $\rightarrow \Delta \Theta \approx 5^*10^{-11}$ rad (1nm at 20m distance) – negligible
- Separation of diffraction orders
 - Angular separation: Equation as above with Δf : Center frequency (110MHz)
 - Distance to spatial separation of 0^{th} and 1^{st} order by 5mm: $\approx 2.10m$

AOM setup at PITZ

- From Gooch & Housego: AOM + Driver + stage
- Suido Klemz: Buildup of electronic box including driver and interface to PITZ laser, e.g. trigger for synchronization
- > Optical setup on laser table (switchable AOM mode)

First Results (1)

> Electronics: Currently 2 standard modes

- AOM on when laser pulses present
- AOM envelope adjustable

- Fast switching pulse to pulse
- > High contrast ratio (at least 500:1)

First Results (2)

> Measurement: Relative power in diffraction orders

Order	-1	0	+1	+2
RF off	0%	100%	0%	0%
RF on	2%	8%	79%	8%

- > Measured diffraction efficiency $\approx 80\%$
- With RF on almost all power in 1st order and next neighbor orders
 - SiO₂ has low optical losses in UV (<0.1% for AOM) should bring improvement to original problem

First Results (3)

Measurement with VC2 (measured 26.10.2011A)

> No visible influence of AOM to lateral profile

Next steps

- Influence on temporal pulse profile (OSS)
- > Total efficiency (energy meter)
- Determine extinction ratio (PMT, PCO camera)
- Energy/position-jitter over pulse train (PMT+PCO/VC2)
 - Synchronization of RF driver for acoustic wave to master oscillator fix phase of acoustic wave when laser pulse arrives (available: 108MHz)
- Integration into PITZ μs timing system (GUI)
- Experiments with electron beam
 - Extinction ratio etc. as above
 - Bunch charge along pulse train
 - Emittance measurements?

Summary

- Photocathode laser: Influence of BBO conversion crystal warming on properties of electron bunches (Charge, arrival time etc.)
 - Seen at PITZ and FLASH
- Possible solution: UV Acousto-Optic Modulator (AOM) as pulse picker
- > AOM was bought and is being tested at PITZ
- > First results:
 - Fast enough to pick single pulses with high contrast ratio
 - Low loss / high diffraction efficiency
 - No visible influence on lateral profile
- Next: More experiments at PITZ, later FLASH(?)

