Acousto-optic Modulator (AOM) as Laser Pulse Picker

First Experiences at PITZ

Matthias Gross, Guido Klemz
AOM as Pulse Picker
PITZ Physics Seminar, 08. Dec. 2011

Contents

> Motivation
> Principle: The Acousto-Optic Effect
$>$ Properties of an Acousto-Optic Modulator (AOM)
> Setup at PITZ
> First Results
> Next Steps
> Summary

Motivation

> Critical part of photocathode laser system: frequency quadrupling. Wavelength of laser pulses is converted from infrared to ultraviolet (at PITZ: $1030 \mathrm{~nm} \rightarrow 257.5 \mathrm{~nm}$) in two steps with nonlinear crystals - LBO and BBO
$>$ BBO crystal ($2^{\text {nd }}$ step $-515 \mathrm{~nm} \rightarrow 257.5 \mathrm{~nm}$) absorbs a tiny fraction of UV light - significantly enough that effects have been seen at PITZ and FLASH

- Absorption leads to local increase of temperature which changes the properties of the frequency conversion
> PITZ
- Difference of "cold OSS" and "warm OSS"
- Variations of bunch charge over pulse train
> FLASH
- Variation of beam arrival time over pulse train

Experimental Evidences for BBO Crystal Warming at PITZ

> OSS: Difference of pulse length and form directly after starting and after waiting a few minutes (measured 05.05.2011M)

> Bunch charge along pulse train (measured 04.05.2011M)

The Acousto-Optic Modulator (AOM)

> Possible solution: cw pulse train conversion into UV, then definition of pulse trains with UV pulse picker \rightarrow stable temperature of BBO crystal

- Important: pulse picker must not show same affect as BBO crystal!
> Candidate for pulse picker: Acousto-Optic Modulator (AOM)
- Principle: Diffraction of laser beam at acoustic wave

Comparison of available AOMs

	Crystal Technologies via EQ Photonics: 3200-1220	A-A Optoelectronics via Pegasus Optik: MQ200-B30A1.5-244.266-Br	$\begin{aligned} & \text { Gooch \& Housego: 35110-2- } \\ & \text { 244-BR } \\ & \text { (APE: OA99) } \end{aligned}$	Brimrose via Laser2000: FSPP-250-16-BR-257
Material	SiO_{2} (Quartz)	SiO_{2} (UV grade fused silica)	SiO_{2} (KrF grade fused silica)	SiO_{2} (UV grade fused silica)
Wavelength	257nm	244-266nm	244-260nm	257nm
Aperture	0.25 mm diameter	$1.5 \mathrm{~mm} \times 2 \mathrm{~mm}$	2 mm diameter	0.3 mm diameter
Center Frequency	200 MHz	200 MHz	110 MHz	250 MHz
Rise time (10\%-90\%)	143ns/mm beam diameter	110 $\mathrm{ns} / \mathrm{mm}$ beam diameter 10ns min.	110 $\mathrm{ns} / \mathrm{mm}$ beam diameter 10 ns min.	34 nm min.
Contrast ratio DC	1000:1	2000:1	1000:1	>1000:1
Contrast ratio 1 MHz	same	same	same	? (same)
Diffraction efficiency	75\%	$\begin{aligned} & >70 \% \text { over range } \\ & >85 \% \text { @ } 257 \mathrm{~nm} \end{aligned}$	>70\%	50\%
Insertion loss	<5\%	<5\%	<1\%	<2\%
Geometry	Orthogonal (with AR coating)	Brewster incidence (uncoated)	Brewster incidence (uncoated)	Brewster incidence (uncoated)
Deflection angle	9mrad	8 mrad	4.7 mrad	10 mrad
Max. power density	?	> $10 \mathrm{~W} / \mathrm{mm}^{2}$	> 10W/mm ${ }^{2}$	$100 \mathrm{~W} / \mathrm{mm}^{2}$
Wavefront distortion	?	< $\lambda / 12$ (est.)	- optical polishing	$\lambda / 10$
Max RF power	1W	4W	4W	2W
V.S.W.R	1.5:1	1.5:1	1.2:1	2:1
Driver electronics input for pulse trains	TTL	Analog or TTL	TTL	1V@ 50Ω
Price AOM Driver Total	$\begin{array}{\|l} \hline 1400 € \\ 820 € \\ 2220 € \\ \text { (is } 50 \% \text { with report) } \end{array}$	$\begin{aligned} & 1998 € \\ & 4004 € \\ & 6002 € \end{aligned}$	$\$ 2600$ $=1820 €$ $\$ 900$ $=630 €$ $\$ 3500$ $=2450 €$ APE: $6613,43 €$	$\begin{array}{\|l} \hline 2690 € \\ 3590 € \\ 6280 € \end{array}$

Gooch\&Housego AOM was bought in August 2011 (funded by FLASH)

Some Checks

> Used beam: $1^{\text {st }}$ order (highest contrast - ideally no power with RF off)

- Total loss: (1 - insertion loss) * diffraction efficiency \rightarrow around 20% at 257 nm
$>1^{\text {st }}$ order is frequency shifted
- $\Delta \lambda=\frac{\lambda}{c} \Delta \quad \Delta f$: Center frequency $(110 \mathrm{MHz}) \rightarrow \Delta \lambda<0.1 \mathrm{pm}-$ negligible
$>$ Progress of acoustic wave front during pulse duration (20 ps)
- $0.12 \mu \mathrm{~m}$ << beam diameter $(1 \mathrm{~mm}) \rightarrow$ optical pulse sees essentially fixed reflector
$>$ Pointing stability
- $\Delta \Theta: \lambda \frac{1}{V_{a}} \quad \Delta f:$ Frequency uncertainty; V_{a} : acoustic velocity ($\approx 6000 \mathrm{~m} / \mathrm{s}$ for SiO_{2}) \rightarrow e.g. $1 \mathrm{~Hz} \rightarrow \Delta \Theta \approx 5^{* 1} 10^{-11}$ rad (1 nm at 20 m distance) - negligible
$>$ Separation of diffraction orders
- Angular separation: Equation as above with Δf : Center frequency (110 MHz)
- Distance to spatial separation of $0^{\text {th }}$ and $1^{\text {st }}$ order by $5 \mathrm{~mm}: \approx 2.10 \mathrm{~m}$

AOM setup at PITZ

> From Gooch \& Housego: AOM + Driver + stage
> Guido Klemz: Buildup of electronic box including driver and interface to PITZ laser, e.g. trigger for synchronization
> Optical setup on laser table (switchable AOM mode)

First Results (1)

> Electronics: Currently 2 standard modes

- AOM on when laser pulses present
- AOM envelope adjustable
> Fast switching pulse to pulse
> High contrast ratio (at least 500:1)

First Results (2)

> Measurement: Relative power in diffraction orders

Order	-1	0	+1	+2
RF off	0%	100%	0%	0%
RF on	2%	8%	79%	8%

$>$ Measured diffraction efficiency $\approx 80 \%$
$>$ With RF on almost all power in $1^{\text {st }}$ order and next neighbor orders

- SiO_{2} has low optical losses in UV ($<0.1 \%$ for AOM) should bring improvement to original problem

First Results (3)

$>$ Measurement with VC2 (measured 26.10.2011A)

> No visible influence of AOM to lateral profile

Next steps

> Influence on temporal pulse profile (OSS)
$>$ Total efficiency (energy meter)
> Determine extinction ratio (PMT, PCO camera)
> Energy/position-jitter over pulse train (PMT+PCO/VC2)

- Synchronization of RF driver for acoustic wave to master oscillator - fix phase of acoustic wave when laser pulse arrives (available: 108 MHz)
$>$ Integration into PITZ μ s timing system (GUI)
$>$ Experiments with electron beam
- Extinction ratio etc. as above
- Bunch charge along pulse train
- Emittance measurements?
> Photocathode laser: Influence of BBO conversion crystal warming on properties of electron bunches (Charge, arrival time etc.)
- Seen at PITZ and FLASH
> Possible solution: UV Acousto-Optic Modulator (AOM) as pulse picker
$>$ AOM was bought and is being tested at PITZ
$>$ First results:
- Fast enough to pick single pulses with high contrast ratio
- Low loss / high diffraction efficiency
- No visible influence on lateral profile
> Next: More experiments at PITZ, later FLASH(?)

