Fields and electron trajectories analysis for HEDA2 dipole magnets

Keerati Kusoljariyakul

Contents

- Introduction
 - HEDA2 dipole magnets designed specification
- Measurement data and analyses
 - Dipole field map
 - Field data analysis
 - Comparison with hard-edge and astra field
- Electron trajectory analysis
 - Comparison with hard-edge and astra field
 - Current to momentum calibration
- Summary

HEDA2

Devices along the dispersive arm

- 3 dipole magnets
- 1 quadrupole magnets
- 2 ICTs
- 2 BPMs
- 2 screen stations

Question

 How different the field use in simulation code like ASTRA compare to the real measurement field?

Dipole magnet specification

Magnet	D1	D2	D3
Bending angle (°)	60	120	60
Exit angle (°)	0	9	0
Homogeneity	±5×10 ⁻⁴	±5×10 ⁻⁴	±5×10 ⁻⁴

Only specification that relate to this work is shown.

S.Rimjaem

Magnet	zone	D1	D2	D3
	1	[-80,80]	[-80,80]	[-60,60]
x (mm)[from,to]*	2	[-80,80]	[-80,80]	[-60,60]
	3	[-70,90]	[-48,107]	[-60,50]
z (mm) [from,to]*	1	[-125,365]	[-145,360]	[-80,360]
	2	[-125,365]	[-145,360]	[-80,360]
	3	[-165,165]	[-250,250]	[-95,95]
	1	0	180	180
z-axis angle (°)**	2	180	0	180
	3	0	180	0

Zone1 = left Zone2 = right Zone3 = center

*5 mm step **angle to ideal path, ideal path defined as path on center of dispersive arm beam line

Information from DANFYSIK report

Field resampling

We need to know the field at points where electron will pass, which are mostly not cover in measurement. Thus, resampling is necessary.

Details

- Bilinear interpolation
- No extrapolation
- Can sampling everywhere

D1

D2

z is measured on ideal path

D3

Effective length

x =	-45 mm	-25 mm	0 mm	25 mm	45 mm
D1 (mm) / (%)	621.4	623.4	625.4	627.0	628.1
D1 (IIIII)/()	59.34	59.53	59.72	59.87	59.98
D2(mm)/(9)	818.1	825.2	832.6	838.8	842.7
D2 (mm) /()	117.19	118.20	119.25	120.14	120.71
D2 (mm) (10)	409.7	412.9	416.0	418.3	419.4
U3 (mm) /()	58.69	59.15	59.59	59.91	60.07

Excitation

6th order polynomial fitting

	D1		D2	D3	
A0	2.213E-	03 2	.229E-03	2.218	E-03
A1	1.238E-	02 1	.816E-02	1.831	E-02
A2	1.104E-	04 4	.063E-04	3.047	E-04
A3	-4.540E-	06 -5	.730E-05	-3.395	E-05
A4	-3.275E-	07 3	.879E-06	1.596	E-06
A5	2.626E-	-1	.329E-07	-3.225	E-08
A6	-5.121E-	10 1	.618E-09	5.531	E-11
	desi	gned fie	ld at (spec	c=19A)	

'his ta	ble show	how muc	h current ne	ed to
produ	ce field a	amplitude	in specificati	ion

Spec : 5x10⁻⁴ at 2-3 gaps (120-180 mm) from pole edge D1

Homogeneity

Vertical homogeneity

spec: 5 x 10^{-4} over vertically +/- 25 mm

DANPYSIK also provides horizontal field measurement . The field has been measured on horizontal plane.

ASTRA dipole field

In ASTRA the field of a dipole magnet is calculated from the equation

From ASTRA manual V2.0 p.77

whered is normal distance from magnet edgeG is gap between pole

z (m)

Field	<i>L_{eff}</i> D1/D2/D3 (mm)
measurement	624.7/832.4/415.4
ASTRA	628.3/837.2/418.2
hardedge	628.0/837.0/418.0

Hard edge field is defined as a field with rectangular

field profile with length equal to length of magnet edge.

Trajectory analysis : algorithm

- Using adaptive step size Runge-Kutta 4th order method
- Try to solve the Lorentz force equation

- The Cartesian coordinate is used
- The field can be measurement, ASTRA or hard edge field

Comparison : Trajectories under field

HEDA2 section trajectory simulator Written by Keerati Kusoljariyakul October 2011

D1 field = 222.358 mT D2 & D3 field = 333.537 mT

- blue line = ASTRA field.
- black line = field.
- energy = 40 MeV.
- Both fields use same maximum field (field calculated from bending equation).
- Electron move as expected in ASTRA field.
- In measurement field, electron move off the ideal path a little bit after D1 then D2 amplify the effect, make the electron hit chamber before entering D3

Optimized trajectory : parallel to ideal path at D3 exit

	Measurement	ASTRA	Hardedge	Ideal
D1 field (mT)/(A)	140.167/10.72	138.956	138.956	138.956
D2 field (mT)/(A)	212.264/10.96	208.434	208.434	208.434
D3 field (mT)/(A)	210.180/10.85	208.729	208.437	208.434
x at D3 exit (m)	-2.91×10 ⁻³	3.09×10 ⁻⁴	-2.25×10 ⁻⁶	0
x´at D3 exit (°)	1.17×10 ⁻⁵	1.09×10 ⁻⁵	4.03×10 ⁻⁶	0
	Measurement	ASTRA	Hardedge	Ideal
D1 field (mT)/(A)	Measurement 224.295/17.36	ASTRA 222.585	Hardedge 222.538	Ideal 222.358
D1 field (mT)/(A) D2 field (mT)/(A)	Measurement 224.295/17.36 339.665/18.09	ASTRA 222.585 333.490	Hardedge 222.538 333.531	Ideal 222.358 333.537
D1 field (mT)/(A) D2 field (mT)/(A) D3 field (mT)/(A)	Measurement 224.295/17.36 339.665/18.09 336.329/17.71	ASTRA 222.585 333.490 334.009	Hardedge 222.538 333.531 333.549	Ideal 222.358 333.537 333.537
D1 field (mT)/(A) D2 field (mT)/(A) D3 field (mT)/(A) x at D3 exit (m)	Measurement 224.295/17.36 339.665/18.09 336.329/17.71 2.91×10 ⁻³	ASTRA 222.585 333.490 334.009 0	Hardedge 222.538 333.531 333.549 1.48×10 ⁻⁵	Ideal 222.358 333.537 333.537 0

25 MeV

40 MeV

ASTRA field : magnet gap test

Example plot when electron moving on ideal path entering dipole 2, traverse pass dipole 2 and then observed at SCR2. Center meaning that the electron incident at SCR2 center. Parallel mean the electron exit dipole 2 parallel to ideal path.

Energy calibration equations

Center of SCR1/SCR2/BPM

	A0	A1	A2	A3	A4	A5	A6
D1	0.322	2.303	1.116E-06	-3.257E-07	3.982E-08	-2.126E-09	-1.133E-08
D2	0.247	2.266	1.15E-06	-2.752E-07	2.787E-08	- 1.252E-09	-3.337E-08
D3	0.241	2.268	7.838E-06	-2.155E-06	2.415E-07	-1.183E-08	-2.285E-08

Parallel to the ideal path

	A0	A1	A2	A3	A4	A5	A6
D1	0.326	2.303	-2.651E-08	1.205E-07	-1.988E-08	1.097E-09	-1.139E-08
D2	0.246	2.261	- 1.477E-05	3.255E-06	-3.319E-07	1.559E-08	-3.359E-08
D3	0.240	2.261	1.969E-07	1.761E-07	-3.229E-08	1.932E-09	-2.302E-08

Energy calibration comparison

Ideal case

Calibration equation

	A0	A1
D1 ideal	0	179.87
D1 center	1.24E-06	178.25
D1 parallel	1.38E-06	178.23
D2 ideal	0	119.92
D2 center	3.76E-07	118.07
D2 parallel	-7.07E-05	117.82
D3 ideal	0	119.92
D3 center	1.04E-05	118.09
D3 parallel	-1.09E-06	117.70

Effect of energy offset at D1

Eo	Energy offset	B (mT)	ΔB (mT)
	-20 keV	37.4774	-0.1127
6.72 MeV	0	37.5901	0.0000
	+20 keV	37.7023	0.1122
	-20 keV	140.1084	-0.1122
25 MeV	0	140.2207	0.0000
	+20 keV	140.3328	0.1122
	-20 keV	224.2694	-0.1140
40 MeV	0	224.3834	0.0000
	+20 keV	224.4938	0.1104

If the beam has energy offset of 20 keV, how much field different to guide the beam incident on center of SCR1?

Summary

- The company provide us the field information we need but we have to process it.
- Effective length of the D1,D2,D3 on ideal trajectory are 59.72, 119.25, 59.59 degree.
- To achieve specify field, the current need for D1,D2,D3 are 17.81, 18.08, 17.91.
- Field homogeneity is in specification.
- ASTRA field with correct gap is stronger than the measurement field, but we may able to adjust the gap or pole edge to mimic measurement field.
- The dipole magnet current-electron momentum relation has been study.

TODO

- Energy spread measurement on the screen
- Ability to measure sliced beam parameters
- Use ASTRA output as input to compare the result with ASTRA