2 Parts

-Difference between YAG and Diamond screen

-High Load Test (9.6.2011n)

S. Rimjaem, Workshop on Scintillating Screen Applications in Beam Diagnostics, GSI, Darmstadt, February 15th, 2011

Chemical Vapour Deposition (CVD) Diamond Screen

thickness	100 μm
diameter	30 mm
Incident angle	45°
High thermal conductivity	5 times higher than Cu
Emission wavelengths	415 – 478 nm

Reference: M. Degenhard, "CVD Diamond

Screens for Beamline Diagnosis at PETRA III"

Diamond:

polykristalline with special doping

Why Diamond:

Excellent Thermal Conductivity

- can withstand large heat-load

Excellent Vacuum Properties

Excellent Mechanical Stability

FLUKA simulation of a diamont radiator, assumtion: EDEPO ~ fluorescence

High power test of Diamond and YAG screen

Adjust to 1 nC at H1,ICT1 Focus on D /YAG screen Incraese NOP

Observe pressure in IGP1,IGP2,IGP3 Observe beam spot on screen

Diamond: NOP 4, gain 25

YAG (Aluminium): NOP 1, gain 18

RMS ~ 0.7 mm

Diamond-Screen

stable vacuum at NOP=500 for > 30 mins

Beam-spot at start (NOP = 500)

HJG,02082011

36 min later (10.8 10⁶ NOP)

Altogether 19.6 10^6 NOP in 104 min at ~ 1 nC

after 104 min (19.6 10⁶ NOP)

HJG,02082011

at start

Diamond:

Intensity drops to 38 %, but only in the last 5 mins.

YAG-Screen

unstable vacuum behaviour at NOP = 200 we interrupt the test

after 32 min (19.3 10³ NOP) interrupt: vacuum bad

YAG : at start

diamond: at 1500 ° C it sublimates to graphite HJG,02082011

Simplification:

- Slab (z=0)
- Q = 1 nC (constant)
- $C,\lambda = constant (\neq f(T))$
- No heat conduction between bunches
- No heat radiation
- Temp.-jump 1 train (NOP= 500, σ ~ 0.76 mm): 84.9 ° C

Solve heat PDE on a mesh (FEM):

$$\partial_t T(x,t) = k \Delta T(x,t)$$

 $k = \lambda/(\rho * C)$

- λ = thermal conductivity C = thermal capacity ρ = density
- FreeFEM++ free avialable PDE solver <u>www.freefem.org</u>

Simulation with 500 NOP/train and 1 nC

Within 0.1 s (the arrivel of the next train) the temperature in the center of the beam-spot cools down by 67.5 $^{\circ}$ K (in reality this value must be much bigger)

For aluminium this value is 3.3 °K !

Diamond: λ = 20 W/cmK , C = 0.51 J/gK Aluminium: λ = 2.35 W/cmK , C = 0.91 J/gK

measure we really at 1 nC ?

➢No , charge loss in high2 section. (may be ~ 800 pC)

- \sim 7 % charge loss up to the H2-section (already measured 04.05.2011 A, see logbook) - loss of signal bigger than 300 NOP (\sim 50 %)

- Different RMS-size and intensity between YAG and Diamond can be explained.
- The flurescence of Diamond screen is to strong at large NOP.
- Thinner Diamond screen (foil 20 μm) can solve problems probably.
- Diamond is much more stable against heat-load.
- Diamond shows an execlent vacuum behaviour.
- At 1500°C Diamond becomes Graphite.