Emittance measurements and simulations at PITZ

Mikhail Krasilnikov (DESY) for the PITZ Team

Content:

•Photo Injector Test facility at DESY in Zeuthen (PITZ)

•goals and motivation

•setup and main components

•Emittance measurements methodic at PITZ

applied methods

•single slit scan

•Beam dynamics simulations for the PITZ setup

•Emittance measurements at PITZ in 2009 and 2011

•Emittance measurements vs. simulations

Outlook and summary

Photo Injector Test facility at DESY in Zeuthen

The Photo Injector Test facility at DESY in Zeuthen (PITZ) focuses on the development, test and optimization of high brightness electron sources for superconducting linac driven FELs:

 \Rightarrow test-bed for FEL injectors: FLASH, the European XFEL

 \Rightarrow small transverse emittance (~1 mm mrad @ 1 nC)

 \Rightarrow stable production of short bunches with small energy spread

 \Rightarrow further studies: dark current, QE, thermal emittance, ...

+ detailed comparison with simulations = benchmarking for the PI physics extensive R&D on photo injectors in parallel to FLASH operation test and optimize rf guns for subsequent operation at the FLASH and XFEL test new developments (laser, cathodes, beam diagnostics)

XFEL Photo Injector Key Parameters to be tested at PITZ

subsystem	parameter	value	remarks	
	frequency	1.3 GHz		
RF gu	E-field at cathode	60 MV/m	dark current issue	
n cavit	RF pulse duration	700 us	max	
Y	Repetition rate	10 Hz	max	
	Temporal> flat top> FWHM	20 ps	20pg	
0	Temporal -> flat top -> rise/fal time	2 ps		
Cathod	Transverse – rad.homogen.XYrms	0.3-0.4 mm	fine tuning -> thermal emittance	
le lase	Pulse train length	650 us	max	
Ä	Bunch spacing	222 ns (4.5MHz)	1us (1MHz) at PITZ now	
	Repetition rate	10 Hz	max	
Electron bea	Bunch charge	1 nC	other charges under consideration	
	Projected emittance at injector	0.9 mm mrad		
	Bunch peak current	5 kA	after bunch compression (not at PITZ)	
п	Emittance (slice) at undulator	1.4 mm mrad		

Main efforts at PITZ towards XFEL photoinjector

PITZ-1.8 setup

PITZ RF-Gun

PITZ-1.7: New Gun-4.2

Dry-ice sublimation-impulse cleaning \rightarrow significant dark current reduction

Vertical cleaning setup with 110° rotating nozzle.

Dark current measurements

allows high brightness, high average current operation: 1-5 mA in 700 µs, 7-35 µA long term average

CDS-booster

Old TESLA-booster has been replaced with a specilly designed for PITZ CDS-booster

restricted peak gradient (final beam momentun ~13MeV/c)
short RF pulses only (50-100us)

CDS = Cut-Disc-Structure •improved water cooling system •higher peak gradients (final beam momentum ~25MeV/c •long RF pulses (up to 700us) •longer acceleration (L~1.4m) •precise phase and amplitude control (RF probes)

Booster schematic cavity layout. 1 - regular cells,

- 2 rf coupler, 3 rf flanges,
- 5, 5a photo multipliers,
- 6, 6a- vacuum gauges,
- 7 pumping ports,
- 8 ion pumps,
- 9 internal cooling circuit,
- 10 outer cooling circuit,
- 11 support and adjustment.

Photo cathode laser (Max-Born-Institute, Berlin)

Photo cathode laser: temporal pulse shaping

Multicrystal birefringent pulse shaper containing 13 crystals

UV pulses of different shapes can be produced at the PITZ photo cathode

FWHM ~ 2 ps FWHM ~ 11 ps

Gaussian:

Simulated pulse-stacker

\rightarrow High flexibility of photo cathode laser system

Photo cathode laser: transverse pulse shaping

Beam diagnostics at PITZ

Diagnostics for Transverse phase space and Longitudinal phase space

Component	Property	Diagnostics		
	temporal profile	OSS, streak-camera		
Cathode	transverse distribution	Virtual cathodes, CCD cameras		
laser	pulse energy	Energy-meter, PMT		
	position stability	Quadrant-diode		
	bunch charge	Faraday cups, Integrating current transformers		
	beam position	BPMs		
	longitudinal momentum	Dipoles+ dispersive arms (LEDA, HEDA1,2)		
-	transverse distribution	YAD and OTR screens with CCD cameras		
Electron beam	transverse phase space (emittance)	Slit masks (EMSY1,2,3), quadrupoles, tomography module		
	longitudinal profile	Radiators (straight section) + streak read-out, upcoming – Transverse Deflecting Cavity		
	longitudinal phase space	Radiators (dispersive arms) + streak read-out, upcoming – Transverse Deflecting System (TDS)+HEDA2 (slice energy spread)		
	slice emittance	HEDA with booster off-crest, upcoming →TDS+HEDA2		

Transverse Beam Emittance

 $\langle x^2 \rangle$

- > Slit method
- > Quad(s) scan
- > Transverse phase space tomography
- > Slice emittance:
 - Booster off-crest → HEDA
 - Upcoming TDS

Slit scan technique at PITZ

EMSY=Emittance Measurement SYstem

Transverse phase space reconstruction

Slit scan technique at PITZ: sheared emittance

Transverse phase space. Removing correlations

Phase space (nonlinear) correlations should be taken into consideration for the emittance calculations!

Slit scan technique at PITZ: evolution

- > ~2002-2003 rough divergence estimation using center beamlet, 8 bit camera
- > 2003-2005 sheared emittance estimation using 3 slit positions (0; +/-0.7*sigmaX), 8-bit camera
- > 2005-2008 "manual" scan (~200um step) → phase space reconstruction, 12-bit camera
- > 2009-2011 automated synchronized slit scan with adjustable scan speed → phase space "on-line", 12-bit cameras, zoom option, scale procedure

The emittance measurement procedure at PITZ:

- under permanent improvement in terms of resolution and sensitivity
- as conservative as possible (100% rms emittance)!

!NB: measured emittance numbers are permanently reducing as a result of machine upgrades and extensive optimization

"we are measuring more and more of less and less..."

Beam(let) image measurements

- > 12-bit camera is important!
- > Quality criteria: max bit \geq 3000 (at least from 4095=2¹²-1 max)
 - Adjustment of the camera gain G and the number of pulses NoP in a pulse train including camera gating to use the camera dynamic range as much as possible
 - For the beamlet collection -> auxiliary histogram -> at least several bits of some beamlets with an intensity of ≥ 3000

using advantage of the long pulse operation!

- > Image filtering
 - 3-sigma filter
 - Bkg-subtraction
 - X-ray filter
 - MOI=mask of interest at the beamlet collector screen

Slit scan technique at PITZ: how it works now

> Setup the machine

- laser temporal and transverse
- Iaser BBA at the cathode
- gun phase
- bunch charge
- booster phase and gradient beam energy (longitudinal momentum)
- For a chosen main solenoid current (bucking in compensation)
 - Beam transverse distribution (rms size) at EMSY → 12-bit camera!; frames=50xSignal+50xBkg (laser shutter closed) with adjusted camera gain G and NoP
 - Beam transverse distribution at beamlet collection screen for MOI → 12-bit camera! frames=50xSignal+50xBkg (laser shutter closed) with adjusted camera gain G and NoP
 - Slit scan (typical speed 0.1-0.5mm/sec) with simultaneous beamlet image taking. Synchronization of the slit
 position and the frame acquisition (10Hz!) with adjusted camera gain G and NoP
 - Slit scan with closed laser shutter for the average bkg calculation
- Transverse phase space reconstruction and emittance calculations
 - Phase space linear shift to take the slit position into account
 - Scaling procedure (more details in the next slide)
- Error analysis (systematic and statistics e.g. 3x5)

Slit scan technique at PITZ: scale procedure

Photo injector parameters to be optimized

- •Ecath=60MV/m (fixed)
- Launch rf phase ~on-crest
 Laser BBA

•RF pulse duration and FB

•Imain = main solenoid

Compensating Ibuck
 Solenoid BBA

Booster cavity (CDS): •Emax •RF phase ~on-crest •RF pulse length

Cathode laser: •Transverse profile and size X,Yrms •Temporal profile -> ~20..22ps, short rt •Pulse train length (NoP)

Electron bunch:

Charge/bunchTrajectory (e.g. bypass the vacuum mirror)

Beam dynamics simulations for PITZ-1.8

Optimized machine setup (ASTRA simulations)

	parameter	unit	value
	temporal	profile	flat-top
er	transverse	distribution	rad.homogen
e las	rt/FWHM∖ft	ps	2/22\2
thode	XYrms	mm	0.401
Cal	Ek	eV	0.55
	th.emit.	mm mrad	0.34
5	Ecath	MV/m	60.58
F-gu	phase	deg	-1.116
R	maxBz	Т	-0.22808
)S ost	maxE	MV/m	20.6
b o	phase	deg	0
5	charge	nC	1
MSY	momentum	MeV/c	24.64
8 E	proj.emit.	mm mrad	0.60
bean	th./proj.em.	%	57%
φ.	<sl.emit.></sl.emit.>	mm mrad	0.53

Transverse distribution radial homogeneous

Beam dynamics simulations for PITZ-1.8: e-beam at EMSY

Mikhail Krasilnikov | Emittance measurements and simulations at PITZ | 07.06.2011 | Page 24

Beam dynamics simulations for PITZ-1.8: electron beam at EMSY – slice parameters

Slice emittance

Slice energy spread

Beam dynamics simulations for PITZ-1.8: tolerances

Simulated emittance growth vs. gun gradient

Emittance measurements at PITZ (typical solenoid scan)

Machine setup (07.05.2011M): BSA=1.2mm; gun=6deg off crest; 1nC; booster=on-crest

Mikhail Krasilnikov | Emittance measurements and simulations at PITZ | 07.06.2011 | Page 28

Emittance measurements at PITZ: typical solenoid scan

Emittance for different charges for PITZ1.7 setup (2009)

- Laser temporal profile: flat-top, 23-25 ps (FWHM), 2-3 ps rise-time, 3-4 ps fall-time
- Laser (rms) spot size: $0.05 \rightarrow 0.44$ mm
- Maximum gun momentum: ~6.68 MeV/c
- Gun phase: +6 deg from maximum mean momentum gain phase
- Booster phase: max. momentum gain phase $\rightarrow \sim 14.5$ MeV/c for 1 nC bunch charge

 \rightarrow ~12.3 MeV/c beam momentum for lower changes

Measurements 2009						
Q (nC) 1 0.5 0.25 0.1						
σ _{xy} (mm)	0.36	0.26	0.21	0.15		
ε _x	0.72±0.01	0.53	0.42	0.29		
ε _y	1.09±0.02	0.77	0.53	0.37		
ε _{xy}	0.89±0.01	0.64	0.47	0.33		

S.Rimjaem et al."Measurements of transverse projected emittance for different bunch charges at PITZ", Proceedings of FEL2010, Malmö, Sweden, pp.410-413.

these results + experience from LCLS (only small degradation of slice emittance from gun to undulator) →FEL can be operated with 14 GeV beam energy

Gun now in operation at FLASH

•But! Increase of measured emittance values due to phase jitter and slope over train! (especially for low charges)

Improvement of the RF gun phase stability

Projected emittance measurements at PITZ 2009-2011

Projected emittance measurements at PITZ 2011

Projected emittance measurements at PITZ 2011

								Q/j	
Q, nC	shift statistics	laser BSA / σ _{xy} mm	∲ _{gun} / ∳ _{booster} , deg	Pz(after gun) / Pz(final), MeV/c	Beam at EMSY1	X-phase space	Y-phase space	Xemit Yemit XYemit, mm mrad	inary
2.0	03.05.20 11M-A 3x3 stat	1.5 / 0.377	6 / 0	6.69 / 24.79		L_== 394.6.(A). Q=2.005.(0006.[x]) L_== 394.6.(A).(A).(A).(A).(A).(A).(A).(A).(A).(A)		1.239 1.267 1.251	
1.0	07.05.20 11N 3x3 stat	1.2 / 0.300	6 / 0	6.67 / 24.67		And	L	0.724 0.603 0.661	Same scale span for phase spaces
0.25	06.04.20 11N 3x5 stat	0.7 / 0.182	0 / 0	6.70 / 25.07			L	0.367 0.292 0.328	
0.1	12.04.20 11M 3x3 stat	0.5 / 0.123	0 / 0	6.71 / 24.91		L_=1894.[A], Q=018 (2.004.[bc]] SEC_TR 14 publics; S_m (5_m + 120) 10 (10 (10 (10 (10 (10 (10 (10 (10 (10 (L = 393.4, (A), Q = 6.334 + 6.600, [hc] Sin Y, 15 palees, B 15_H = 1.00 1 1 1 1 1 1 1 1 1 1 1 1 1	0.281 0.160 0.212	Zoomed
0.02	30.04.20 11A 2x3+4stat	0.35 / 0.085	0 / 0	6.76 / 23.68			L = 347.4. [AL Q = 0.000 0.000 [4]	0.111 0.133 0.121	spaces

Emittance measurements at PITZ 2011: core emittance

*LCLS results: projected emittance, 95% RMS values. D. Dowell + P. Emma, priv. commun. + FEL2009

	LOLS (95% RN	/IS values)*	PIIZ (100% RMS)	PIIZ (95% RMS)
Q, nC	projected E	slice E	projected E	projected E
1	1.2	0.9	0.71	0.60
0.25	0.45	0.4	0.32	0.28
0.02	0.2	0.14	0.12	0.11

Emittance at PITZ: measurements vs simulations

Various bunch charges

Solenoid scan for 1nC

Only for 0.1nC rather good agreement on an optimum rms laser spot size!

Optimum simulations vs. optimum measurements, but different laser rms spot size!!

Experimental optimization is very important !

Emittance at PITZ: measurements vs simulations

Reasons of the discrepancy? \rightarrow emission

Measured and simulated laser energy scan

ASTRA: Qbunch \rightarrow initial bunch charge at the cathode Measurement: \rightarrow a*LT~laser energy

?Electron beam x-y asymmetry -> scale factor SF_x upto 2..3

Mikhail Krasilnikov | Emittance measurements and simulations at PITZ | 07.06.2011 | Page 37

Rough schedule for the future

PITZ delivered decisive contributions to FLASH and XFEL and can also be a **goldmine** in future:

Timeline:

- Jun.`11-Nov.`11:
 Shutdown for installing TDS, HEDA2 and Toshiba klystron
- > Dec.`11-Jun.`12: Run

> July`12: start to install and condition general purpose XFEL-FLASH-PITZ-Gun

Scientifics:

Bread & Butter (ongoing, partially done) :

- > Characterizing XFEL gun, later higher rep.rate
- > XFEL test bed, e.g. laser system (4.5MHz + therm. lens), beam diagnostics

New tasks/options (honey from low emittance, high duty cycle, flexibility @PITZ) :

 > Optimizing new operation modes: ultra short bunches (single spike lasing)
 → together with HH: S2E simulations, exp. tests, diagnostics
 → 3D elliptical laser pulses on cathode: lower ε, halo,

bunch length

> E.g. participation in **Plasma Acceleration**

PITZ setup: now and upgrades during this year

Summary

> PITZ = benchmark for high brightness electron sources:

- specs for the European XFEL have been demonstrated (emittance <0.9 mm mrad at 1nC)</p>
- beam emittance has also been optimized for a wide range of bunch charge (20pc...2nC)
- rather high duty factor (average power, long pulse trains) in a stable operation
- > The main focus at PITZ \rightarrow small emittance electron beams. To reach this:
 - high gun gradients
 - laser temporal shaping
 - machine stability
 - extensive machine optimization
- > Emittance measurement procedure
 - nominal method → single slit scan
 - as conservative as possible \rightarrow 100% rms emittance
 - continuous improvement of the procedure
- PITZ serves also as a benchmark for theoretical understanding of the photo injector physics (beam dynamics simulations vs. measurements)

The End

